
CN101
Lecture 7

Strings

Topics

• Basic String Operations

• String Slicing

• Testing, Searching, and Manipulating Strings

2

Basic String Operations

• Many types of programs perform operations on strings

• In Python, many tools for examining and manipulating
strings
• Strings are sequences, so many of the tools that work with

sequences work with strings

• Display the character by using print()function

• Assigning a string into a variable can be done by quotes.

3

>>> a = “Hello”
>>> print(a)
Hello

>>> print(“Hello”)
Hello

Accessing the Individual Characters
in a String
• To access an individual character in a string:

• Use a for loop
• Format: for character in string:

• Useful when need to iterate over the whole string, such as to count
the occurrences of a specific character

4

>>> name = 'Juliet'
>>> for ch in name:
... print(ch)
...
J
u
l
i
e
t

5

6

def main():
Initialize an accumulator variable
count = 0

Get a string from the user.
my_string = input('Enter a sentence: ')

Count the Ts.
for ch in my_string:

if ch == 'T' or ch == 't’:
count += 1

Print the result.
print('The letter T appears', count, 'times.')

main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

count_Ts.py

Program Output

Enter a sentence: The tiger took the time to think

The letter T appears 7 times.

Accessing the Individual Characters
in a String
• To access an individual character in a string:

• Use indexing
• Each character has an index specifying its position in the string,

starting at 0

• Format: character = my_string[i]

7

Accessing the Individual Characters in a
String (cont’d.)

•IndexError exception will occur if:
• You try to use an index that is out of range for the string

• Likely to happen when loop iterates beyond the end of the string

•len(string) function can be used to obtain the
length of a string

• Useful to prevent loops from iterating beyond the end of a
string

8

String Concatenation

• Concatenation: appending one string to the end of
another string
• Use the + operator to produce a string that is a combination

of its operands

• The augmented assignment operator += can also be used to
concatenate strings

• The operand on the left side of the += operator must be an existing
variable; otherwise, an exception is raised

9

Strings Are Immutable

• Strings are immutable
• Once they are created, they cannot be changed

• Concatenation doesn’t actually change the existing string, but rather
creates a new string and assigns the new string to the previously used
variable

• Cannot use an expression of the form

• string[index] = new_character
• Statement of this type will raise an exception

10

11

This program concatenates strings.

def main():
name = 'Carmen'
print('The name is', name)
name = name + ' Brown'
print('Now the name is', name)

Call the main function.
main()

1
2
3
4
5
6
7
8
9
10

concatenate.py

Program Output

The name is Carmen

Now the name is Carmen Brown

String Slicing

• Slice: span of items taken from a sequence, known as
substring
• Slicing format: string[start:end]

• Expression will return a string containing a copy of the characters
from start up to, but not including, end

• If start not specified, 0 is used for start index

• If end not specified, len(string) is used for end index

• Slicing expressions can include a step value and negative
indexes relative to end of string

12

13
>>> full_name = 'Patty Lynn Smith'
>>> middle_name = full_name[6:10]
>>> middle_name
'Lynn'
>>>
>>> first_name = full_name[:5]
>>> first_name
'Patty'
>>>
>>> last_name = full_name[11:]
>>> last_name
'Smith'
>>> last_name = full_name[-5:]
>>> last_name
'Smith'
>>>
>>> my_string = full_name[:]
>>> my_string
'Patty Lynn Smith'

14
>>> letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> letters[0:26:2]
'ACEGIKMOQSUWY'
>>>
>>> letters[::2]
'ACEGIKMOQSUWY'
>>>
>>> letters[::-1]
'ZYXWVUTSRQPONMLKJIHGFEDCBA'

Testing, Searching, and Manipulating
Strings
• You can use the in operator to determine whether one

string is contained in another string
• General format: string1 in string2

• string1 and string2 can be string literals or variables
referencing strings

• Similarly you can use the not in operator to
determine whether one string is not contained in
another string

15

text = 'Four score and seven years ago'
if 'seven' in text:
 print('The string "seven" was found.')
else:
 print('The string "seven" was not found.')

String Methods

• Strings in Python have many types of methods, divided
into different types of operations
• General format:

 mystring.method(arguments)

• Some methods test a string for specific characteristics
• Generally Boolean methods, that return True if a condition

exists, and False otherwise

16

String Methods (cont’d.)
17

Method Description

isalnum() Returns true if the string contains only alphabetic letters or digits and is at least
one character in length. Returns false otherwise.

isalpha() Returns true if the string contains only alphabetic letters and is at least one
character in length. Returns false otherwise.

isdigit() Returns true if the string contains only numeric digits and is at least one
character in length. Returns false otherwise.

islower() Returns true if all of the alphabetic letters in the string are lowercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

isspace() Returns true if the string contains only whitespace characters and is at least one
character in length. Returns false otherwise. (Whitespace characters are spaces,
newlines (\n), and tabs (\t)).

isupper() Returns true if all of the alphabetic letters in the string are uppercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

18

def main():
Get a string from the user.
user_string = input('Enter a string: ')

print('This is what I found about that string:’)

Test the string.
if user_string.isalnum():

print('The string is alphanumeric.')
if user_string.isdigit():

print('The string contains only digits.')
if user_string.isalpha():

print('The string contains only alphabetic characters.')
if user_string.isspace():

print('The string contains only whitespace characters.')
if user_string.islower():

print('The letters in the string are all lowercase.')
if user_string.isupper():

print('The letters in the string are all uppercase.')

main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

string_test.py

19

Program Output

Enter a string: abc

This is what I found about that string:

The string is alphanumeric.

The string contains only alphabetic characters.

The letters in the string are all lowercase.

Program Output

Enter a string: 123

This is what I found about that string:

The string is alphanumeric.

The string contains only digits.

Program Output

Enter a string: 123ABC

This is what I found about that string:

The string is alphanumeric.

The letters in the string are all uppercase.

String Methods (cont’d.)

• Some methods return a copy of the string, to which
modifications have been made
• Simulate strings as mutable objects

• String comparisons are case-sensitive
• Uppercase characters are distinguished from lowercase

characters

• lower and upper methods can be used for making case-
insensitive string comparisons

20

21Method Description

lower() Returns a copy of the string with all alphabetic letters converted to lowercase. Any
character that is already lowercase, or is not an alphabetic letter, is unchanged.

lstrip() Returns a copy of the string with all leading whitespace characters removed.
Leading whitespace characters are spaces, newlines (\n), and tabs (\t) that appear
at the beginning of the string.

lstrip(char) The char argument is a string containing a character. Returns a copy of the string
with all instances of char that appear at the beginning of the string removed.

rstrip() Returns a copy of the string with all trailing whitespace characters removed.
Trailing whitespace characters are spaces, newlines (\n), and tabs (\t) that appear
at the end of the string.

rstrip(char) The char argument is a string containing a character. The method returns a copy of
the string with all instances of char that appear at the end of the string removed.

strip() Returns a copy of the string with all leading and trailing whitespace characters
removed.

strip(char) Returns a copy of the string with all instances of char that appear at the beginning
and the end of the string removed.

upper() Returns a copy of the string with all alphabetic letters converted to uppercase. Any
character that is already uppercase, or is not an alphabetic letter, is unchanged.

22

String Methods (cont’d.)
23

Method Description

endswith(substring) The substring argument is a string. The method returns true
if the string ends with substring.

find(substring) The substring argument is a string. The method returns the
lowest index in the string where substring is found. If
substring is not found, the method returns -1.

replace(old, new) The old and new arguments are both strings. The method
returns a copy of the string with all instances of old
replaced by new.

startswith(substring) The substring argument is a string. The method returns true
if the string starts with substring.

String Methods (cont’d.)

• Programs commonly need to search for substrings

• Several methods to accomplish this:
• endswith(substring): checks if the string ends with
substring

• Returns True or False

• startswith(substring): checks if the string starts with
substring

• Returns True or False

24

25

filenames = ["photo.jpg", "document.pdf", "image.png", "video.mp4",
"graphic.gif"]
image_files = []

Iterate over each file in the list of filenames
for file in filenames:

Check if the file ends with one of the specified image extensions
if file.endswith(('.jpg', '.png', '.gif')):

image_files.append(file)

print("Image files:", image_files)

1

2
3
4
5
6
7
8
9
10

file_extension.py

Program Output

Image files: ['photo.jpg', 'image.png', 'graphic.gif']

26

urls = [
"https://example.com",
"http://example.org",
"https://secure-site.net",
"ftp://fileserver.com",
"http://insecure.net"

]
secure_urls = []

Iterate over each URL in the list
for url in urls:

Check if the URL starts with 'https://'
if url.startswith("https://"):

secure_urls.append(url)

print("Secure URLs:", secure_urls)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

secure_url.py

Program Output

Secure URLs: ['https://example.com', 'https://secure-site.net']

String Methods (cont’d.)

• Several methods to accomplish this (cont’d):
• find(substring): searches for substring within the

string
• Returns lowest index of the substring, or if the substring is not

contained in the string, returns -1

• replace(substring, new_string):
• Returns a copy of the string where every occurrence of substring

is replaced with new_string

27

28

input email address
email = input("Enter your email address: ")

Use the find() method to locate the position of the '@' symbol
at_position = email.find('@')

Check if the '@' symbol was found
if at_position != -1:
Extract the domain part by slicing

domain = email[at_position + 1:]
print(f"The domain of the email address is: {domain}")

else:
print("Invalid email address. No '@' symbol found.")

1
2
3
4
5
6
7
8
9
10
11
12
13

domain.py

Program Output

Enter your email address: somsak@gmail.com

The domain of the email address is: gmail.com

The Repetition Operator

• Repetition operator: makes multiple copies of a string
and joins them together
• The * symbol is a repetition operator when applied to a string

and an integer
• String is left operand; number is right

• General format: string_to_copy * n

• Variable references a new string which contains multiple
copies of the original string

29

>>> my_string = 'w' * 5
>>> my_string
'wwwww'
>>> print('Hello' * 5)
HelloHelloHelloHelloHello

30

Original text with sensitive words
text = "This is a bad example of a text with offensive language."

Words to be censored
censored_words = ["bad", "offensive"]

Replace each censored word with asterisks
for word in censored_words:

text = text.replace(word, "*" * len(word))

print("Censored text:", text)

1
2

3
4
5
6
7
8
9
10
11

censored_words.py

Program Output

Censored text: This is a *** example of a text with *********

language.

31

def main():
Print nine rows increasing in length.
for count in range(1, 10):

print('Z' * count)

Print nine rows decreasing in length.
for count in range(8, 0, -1):

print('Z' * count)

Call the main function.
main()

1
2
3
4
5
6
7
8
9
10
11

repetition_operator.py
Program Output
Z
ZZ
ZZZ
ZZZZ
ZZZZZ
ZZZZZZ
ZZZZZZZ
ZZZZZZZZ
ZZZZZZZZZ
ZZZZZZZZ
ZZZZZZZ
ZZZZZZ
ZZZZZ
ZZZZ
ZZZ
ZZ
Z

Splitting a String

•split method: returns a list containing the words in
the string
• By default, uses space as separator

• Can specify a different separator by passing it as an argument
to the split method

32

>>> date_string = "10/08/2567"
>>> date_list = date_string.split("/")
>>> date_list
['10', '08', '2567']

33

Example paragraph
paragraph = "Python is a powerful programming language. It is widely
used in web development, data science, and automation. Python's
simplicity makes it accessible to beginners."

Split the paragraph into sentences using the period as the delimiter
sentences = paragraph.split(". ")

Print each sentence
for sentence in sentences:

print(sentence)

1
2

3
4

5
6
7
8

paragraphs.py

Program Output

Python is a powerful programming language

It is widely used in web development, data science, and automation

Python's simplicity makes it accessible to beginners.

34

Example CSV line representing a record
csv_line = "John Doe,35,New York"

Split the line into individual fields
fields = csv_line.split(",")

Assign the fields to variables for easier access
name = fields[0]
age = fields[1]
city = fields[2]

print("Name:", name)
print("Age:", age)
print("City:", city)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

csv_split.py

Program Output

Name: John Doe

Age: 35

City: New York

String Join

• Join: method takes an iterable (objects capable of
returning its members one at a time) as its parameter.

• The Join method returns a string created by joining the elements of
an iterable by string separator.

35

>>> list1 = ['1', '2', '3', '4']
>>> separator = ', '
>>> print(separator.join(list1))
1, 2, 3, 4

36

List of values representing a data record
data = ["John Doe", "35", "New York"]

Join the list elements into a CSV formatted string
csv_line = ",".join(data)

print("CSV Line:", csv_line)

1
2
3
4
5
6
7

csv_join.py

Program Output

CSV Line: John Doe,35,New York

Escape Character

• To insert characters that are illegal in a string, use an
escape character.

• An escape character is a backslash \ followed by the
character you want to insert.

37

This will cause an error!!!
txt = "I will get "A" from CN101"

Using Escape Character
txt = "I will get \"A\" from CN101"

Escape Character (cont’d.)

38

Code Result

\' Single Quote

\" Double Quote

\\ Backslash

\n New Line

\r Carriage Return

\t Tab

\b Backspace

\ooo Octal value

\xhh Hex value

Escape Character (cont’d.)

• Example of other escape characters used in
Python:

39

>>> txt = 'It\'s a good subject.'
>>> print(txt)
It's a good subject.

>>> txt = "This will insert two \\\\ (backslash).”
>>> print(txt)
This will insert two \\ (backslash).

Escape Character (cont’d.)

• Example of other escape characters used in
Python:

40

>>> txt = "Hello\nWorld!"
>>> print(txt)
Hello
World!

>>> txt = "Hello\tWorld!"
>>> print(txt)
Hello World!

Escape Character (cont’d.)

• Example of other escape characters used in
Python:

41

>>> txt = "\110\145\154\154\157" # Octal value
>>> print(txt)
Hello

>>> txt = "\x48\x65\x6c\x6c\x6f" # Hex value
>>> print(txt)
Hello

Summary

• This chapter covered:
• String operations, including:

• Methods for iterating over strings

• Repetition and concatenation operators

• Strings as immutable objects

• Slicing strings and testing strings

• String methods

• Splitting a string

• Escape character

42

	Slide 1: CN101
	Slide 2: Topics
	Slide 3: Basic String Operations
	Slide 4: Accessing the Individual Characters in a String
	Slide 5
	Slide 6
	Slide 7: Accessing the Individual Characters in a String
	Slide 8: Accessing the Individual Characters in a String (cont’d.)
	Slide 9: String Concatenation
	Slide 10: Strings Are Immutable
	Slide 11
	Slide 12: String Slicing
	Slide 13
	Slide 14
	Slide 15: Testing, Searching, and Manipulating Strings
	Slide 16: String Methods
	Slide 17: String Methods (cont’d.)
	Slide 18
	Slide 19
	Slide 20: String Methods (cont’d.)
	Slide 21
	Slide 22
	Slide 23: String Methods (cont’d.)
	Slide 24: String Methods (cont’d.)
	Slide 25
	Slide 26
	Slide 27: String Methods (cont’d.)
	Slide 28
	Slide 29: The Repetition Operator
	Slide 30
	Slide 31
	Slide 32: Splitting a String
	Slide 33
	Slide 34
	Slide 35: String Join
	Slide 36
	Slide 37: Escape Character
	Slide 38: Escape Character (cont’d.)
	Slide 39: Escape Character (cont’d.)
	Slide 40: Escape Character (cont’d.)
	Slide 41: Escape Character (cont’d.)
	Slide 42: Summary

