
CN101
Lecture 5 (Part 2)
Lists and Tuples

Topics

• Finding Items in Lists with the in Operator
• List Methods and Useful Built-in Functions
• Copying Lists
• Two-Dimensional Lists
• List Comprehension
• Tuples

2

Finding Items in Lists with the in
Operator
• You can use the in operator to determine whether an

item is contained in a list
• General format: item in list
• Returns True if the item is in the list,

or False if it is not in the list

• Similarly you can use the not in operator to
determine whether an item is not in a list

3

4
Define the registered users
registered_users = ["alice", "bob", "charlie", "david"]

Get the username from the user
username = input("Enter a username to check: ")

Check if the username is in the registered users
if username in registered_users:
 print(f"Welcome back, {username}!")
else:
 print(f"{username} is not a registered user.")

1
2
3
4
5
6
7
8
9
10
11
12

check_username.py

Program Output
Enter a username to check: bob
Welcome back, bob!

Program Output
Enter a username to check: peter
peter is not a registered user.

5
Define the shopping list
shopping_list = ["milk", "eggs", "bread", "butter"]

Get the item from the user
item = input("Enter an item to check in the shopping list: ")

Check if the item is in the shopping list
if item not in shopping_list:
 print(f"{item} is not in your shopping list.")
else:
 print(f"{item} is already in your shopping list.")

1
2
3
4
5
6
7
8
9
10
11
12

check_shopping_list.py

Program Output
Enter an item to check in the shopping list: banana
banana is not in your shopping list.

Program Output
Enter an item to check in the shopping list: eggs
eggs is already in your shopping list.

List Methods

•append(item): used to add items to a list – item is
appended to the end of the existing list

6

>>> numbers = [1, 2, 3, 4, 5]
>>> numbers.append(6)
>>> numbers
[1, 2, 3, 4, 5, 6]

7books_read1.py

Example list of books read over a month
books_read = []

Adding books to the list
books_read.append("1984 by George Orwell")
books_read.append("To Kill a Mockingbird by Harper Lee")
books_read.append("The Great Gatsby by F. Scott Fitzgerald")

Display the books read
print("Books read this month:")
for book in books_read:
 print(book)

1
2
3
4
5
6
7
8
9
10
11
12

Program Output
Books read this month:
1984 by George Orwell
To Kill a Mockingbird by Harper Lee
The Great Gatsby by F. Scott Fitzgerald

8books_read2.py

Example list of books read over a month
books_read = []

Adding more books based on user input
while True:

new_book = input("Enter a new book you've read (or 'q' to quit): ")
if new_book == 'q':
 break
books_read.append(new_book)

Display the updated list of books
print("Updated list of books read this month:")
for book in books_read:
 print(book)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Program Output
Enter a new book you've read (or 'q' to quit): The Martian
Enter a new book you've read (or 'q' to quit): Dune
Enter a new book you've read (or 'q' to quit): q
Updated list of books read this month:
The Martian
Dune

List Methods (cont’d.)

•index(item): used to determine where an item is
located in a list
• Returns the index of the first element in the list containing
item
• Raises ValueError exception if item not in the list

9

>>> numbers = [1, 2, 3, 4, 5]
>>> numbers.index(3)
2
>>> numbers.index(6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: 6 is not in list

10student_index.py

student_list = [
"Alice",
"Bob",
"Charlie",
"David",
"Eve"

]

student_to_find = input("Enter the name of the student to find their
position: ")

if student_to_find in student_list:
 index = student_list.index(student_to_find)
 print(f"The student '{student_to_find}' is at position {index}.")
else:
 print(f"The student '{student_to_find}' is not in the class list.")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Program Output
Enter the name of the student to find their position: Bob
The student 'Bob' is at position 1.

Program Output
Enter the name of the student to find their position: Peter
The student 'peter' is not in the class list.

List Methods (cont’d.)

•insert(index, item): used to insert item at
position index in the list

•sort(): used to sort the elements of the list in
ascending order

11

>>> numbers = [1, 3, 2, 6, 4]
>>> numbers.insert(2, 5)
>>> numbers
[1, 3, 5, 2, 6, 4]
>>>
>>> numbers.sort()
>>> numbers
[1, 2, 3, 4, 5, 6]

12to-do_list.py

Initial list of tasks
tasks = [

"Buy groceries",
"Clean the house",
"Finish the report",
"Call Alice",
"Pay bills"

]

print("Initial to-do list:")
for task in tasks:

print(f' - {task}')

Insert a new task at a specific position
position = int(input("Enter the position to insert the new task (0-based
index): "))
new_task = input("Enter the new task to insert: ")
tasks.insert(position, new_task)

print("\nTo-do list after insertion:")
for task in tasks:
 print(f' - {task}')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22

13to-do_list.py (cont’d.)

Sort the tasks alphabetically
tasks.sort()

print("\nTo-do list after sorting:")
for task in tasks:
 print(f' - {task}')

23
24
25
26
27
28

Program Output
Initial to-do list:
 - Buy groceries
 - Clean the house
 - Finish the report
 - Call Alice
 - Pay bills
Enter the position to insert the new task (0-based index): 2
Enter the new task to insert: Schedule meeting

To-do list after insertion:
 - Buy groceries
 - Clean the house
 - Schedule meeting
 - Finish the report
 - Call Alice
 - Pay bills

Program Output (cont’d.)

To-do list after sorting:
 - Buy groceries
 - Call Alice
 - Clean the house
 - Finish the report
 - Pay bills
 - Schedule meeting

14

List Methods (cont’d.)

•remove(item): removes the first occurrence of item
in the list

• Raises ValueError exception if item not in the list

•reverse(): reverses the order of the elements in the
list

15

>>> numbers = [1, 2, 3, 2, 5]
>>> numbers.remove(2)
>>> numbers
[1, 3, 2, 5]
>>>
>>> numbers.reverse()
>>> numbers
[5, 2, 3, 1]

16task_list.py

Initial list of project tasks
tasks = [

"Design the UI",
"Develop the backend",
"Write documentation",
"Test the application",
"Deploy to production"

]

print("Initial list of tasks:")
for i, task in enumerate(tasks, 1):

print(f" {i}. {task}")

Prompt the user to input the number of the task to remove
task_number = int(input("Enter the number of the task to remove: "))

Validate the task number
if 1 <= task_number <= len(tasks):

task_to_remove = tasks[task_number - 1]
tasks.remove(task_to_remove)
print(f"\nTask '{task_to_remove}' has been removed.")

else:
print(f"\nInvalid task number: {task_number}")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

17task_list.py (cont’d.)

print("\nList of tasks after removal:")
for i, task in enumerate(tasks, 1):
 print(f" {i}. {task}")

Reverse the order of tasks
tasks.reverse()

print("\nList of tasks after reversing:")
for i, task in enumerate(tasks, 1):
 print(f" {i}. {task}")

25
26
27
28
29
30
31
32
33
34

Program Output
Initial list of tasks:
 1. Design the UI
 2. Develop the backend
 3. Write documentation
 4. Test the application
 5. Deploy to production
Enter the number of the task to remove: 3

Task 'Write documentation' has been removed.

List of tasks after removal:
 1. Design the UI
 2. Develop the backend
 3. Test the application
 4. Deploy to production

List of tasks after reversing:
 1. Deploy to production
 2. Test the application
 3. Develop the backend
 4. Design the UI

18

The enumerate function

• he enumerate function in Python is used to iterate
over a list (or any iterable) and simultaneously get the
index of each item along with the item itself.
• Syntax:

• iterable: The sequence you want to iterate over (e.g., list,
tuple, string).
• start: The starting index (optional, default is 0).

19

enumerate(iterable, start=0)

The enumerate function (cont’d.)
20

>>> fruits = ['apple', 'banana', 'cherry']
>>>
>>> for index, fruit in enumerate(fruits):
... print(index, fruit)
...
0 apple
1 banana
2 cherry

>>> fruits = ['apple', 'banana', 'cherry']
>>>
>>> for index, fruit in enumerate(fruits, start=1):
... print(index, fruit)
...
1 apple
2 banana
3 cherry

Useful Built-in Functions

•del statement: removes an element from a specific
index in a list
• General format: del list[i]

21

>>> numbers = [1, 2, 3, 4, 5]
>>> del numbers[3]
>>> numbers
[1, 2, 3, 5]
>>> del numbers[4]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range

22appointments.py
Initial list of appointments for a week
appointments = [

"Monday: Doctor's appointment at 10:00 AM",
"Tuesday: Team meeting at 2:00 PM",
"Wednesday: Lunch with Sarah at 12:30 PM",

]

print("Initial list of appointments:")
for i, appointment in enumerate(appointments, 1):

print(f"{i}. {appointment}")

Prompt the user to input the number of the appointment to delete
appointment_number = int(input("Enter the number of the appointment to
delete: "))

Validate the appointment number
if 1 <= appointment_number <= len(appointments):

del appointments[appointment_number - 1]
print(f"\nAppointment number {appointment_number} has been deleted.")

else:
 print(f"\nInvalid appointment number: {appointment_number}")

print("\nList of appointments after deletion:")
for i, appointment in enumerate(appointments, 1):
print(f"{i}. {appointment}")

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24

23
Program Output
Initial list of appointments:
1. Monday: Doctor's appointment at 10:00 AM
2. Tuesday: Team meeting at 2:00 PM
3. Wednesday: Lunch with Sarah at 12:30 PM
Enter the number of the appointment to delete: 2

Appointment number 2 has been deleted.

List of appointments after deletion:
1. Monday: Doctor's appointment at 10:00 AM
2. Wednesday: Lunch with Sarah at 12:30 PM

Useful Built-in Functions (cont’d.)

•min and max functions: built-in functions that
returns the item that has the lowest or highest value in a
sequence
• The sequence is passed as an argument

•Sum functions: built-in functions that returns the sum
of all values in a sequence

24

>>> my_list = [5, 4 ,3, 2, 50, 40, 30]
>>> print(f'The lowest value is {min(my_list)}')
The lowest value is 2
>>> print(f'The highest value is {max(my_list)}')
The highest value is 50
>>> print(f'The sum is {sum(my_list)}')
The sum is 134

25temperature2.py

Initial list of daily temperatures over a week
temperatures = [22.5, 24.0, 19.8, 21.3, 25.0]

print("Initial daily temperatures:")
for i, temp in enumerate(temperatures, 1):
 print(f"Day {i}: {temp}°C")

Adding new temperature readings
while True:

new_temp = input("Enter a new temperature reading (or 'q' to quit): ")
if new_temp == 'q':
 break
temperatures.append(float(new_temp))

print("\nUpdated daily temperatures:")
for i, temp in enumerate(temperatures, 1):
 print(f"Day {i}: {temp}°C")

Analyzing temperature data
min_temp = min(temperatures)
max_temp = max(temperatures)
avg_temp = sum(temperatures) / len(temperatures)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

26temperature2.py (cont’d.)

print(f"\nMinimum temperature: {min_temp}°C")
print(f"Maximum temperature: {max_temp}°C")
print(f"Average temperature: {avg_temp:.2f}°C")

24
25
26

Program Output
Initial daily temperatures:
Day 1: 22.5°C
Day 2: 24.0°C
Day 3: 19.8°C
Day 4: 21.3°C
Day 5: 25.0°C
Enter a new temperature reading (or 'q' to quit): 21.1
Enter a new temperature reading (or 'q' to quit): 25.5
Enter a new temperature reading (or 'q' to quit): q

Updated daily temperatures:
Day 1: 22.5°C
Day 2: 24.0°C
Day 3: 19.8°C
Day 4: 21.3°C
Day 5: 25.0°C
Day 6: 21.1°C
Day 7: 25.5°C

27
Program Output (cont’d.)
Minimum temperature: 19.8°C
Maximum temperature: 25.5°C
Average temperature: 22.60°C

List Referencing

• After this code executes, both variables list1 and list2
will reference the same list in memory.

28

>>> # Create a list
>>> list1 = [1, 2, 3, 4]
>>>
>>> # Assign the list to the list2 variable
>>> list2 = list1

List Referencing (cont’d.)
29

>>> list1 = [1, 2, 3, 4]
>>> list2 = list1
>>> list1
[1, 2, 3, 4]
>>> list2
[1, 2, 3, 4]
>>>
>>> list1[0] = 99
>>> list1
[99, 2, 3, 4]
>>> list2
[99, 2, 3, 4]

30inventory.py
Initial inventory list of products in the store
inventory = ["Apple", "Banana", "Orange", "Grape", "Mango"]

Display items to customers (referencing the same inventory list)
display_items_list = inventory

print("Items available:")
for item in display_items_list:
 print(f"- {item}")
print()

Simulating a customer buying an item
purchased_item = input("Enter the name of the item the customer wants to
buy: ")
if purchased_item in inventory:

inventory.remove(purchased_item)
print(f"\nCustomer purchased: {purchased_item}")

else:
 print(f"\n{purchased_item} is not available in the inventory.")

Display items to customers after the purchase
print("Items available after purchase:")
for item in display_items_list:

print(f"- {item}")
print()

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17

18
19
20
21
22
23

31
Program Output
Items available:
- Apple
- Banana
- Orange
- Grape
- Mango

Enter the name of the item the customer wants to buy: Apple

Customer purchased: Apple
Items available after purchase:
- Banana
- Orange
- Grape
- Mango

Copying Lists

• To make a copy of a list you must copy each element of
the list
• Two methods to do this:

• Creating a new empty list and using a for loop to add a copy of each
element from the original list to the new list

32

>>> list1 = [1, 2, 3, 4]
>>> list2 = []
>>> for item in list1:
... list2.append(item)
...
>>> list2
[1, 2, 3, 4]

Copying Lists (cont’d.)

• Creating a new empty list and concatenating the old list to the new
empty list

• As a result, list1 and list2 will reference two separate but
identical lists.

33

>>> list1 = [1, 2, 3, 4]
>>> list2 = [] + list1
>>> list2
[1, 2, 3, 4]

34discounted_prices.py
Initial list of product prices
prices = [10.0, 20.5, 40.9, 50.0, 100.0]

Display the original prices
print("Original Prices:")
for index, price in enumerate(prices, 1):
 print(f"Product {index}: ${price:,.2f}")
print()

Copy prices list into two discounted prices lists for comparison
discounted_prices_1 = [] + prices
discounted_prices_2 = [] + prices

Get the first discount rate from the user
prompt = "Enter first discount rate (as a percentage, e.g., 10 for 10%): "
discount_rate_1 = float(input(prompt)) / 100

Get the second discount rate from the user
prompt = "Enter second discount rate (as a percentage, e.g., 15 for 15%): "
discount_rate_2 = float(input(prompt)) / 100

Apply the first discount to each price in the discounted_prices_1 list
for index in range(len(discounted_prices_1)):
 discounted_prices_1[index] = discounted_prices_1[index] * \
 (1 - discount_rate_1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

35

Apply the second discount to each price in the discounted_prices_2 list
for index in range(len(discounted_prices_2)):
discounted_prices_2[index] = discounted_prices_2[index] * \
 (1 - discount_rate_2)

Display the discounted prices for the first discount rate
print("Discounted Prices (First Discount Rate):")
for index, price in enumerate(discounted_prices_1, 1):
 print(f"Product {index}: ${price:,.2f}")
print()

Display the discounted prices for the second discount rate
print("Discounted Prices (Second Discount Rate):")
for index, price in enumerate(discounted_prices_2, 1):
 print(f"Product {index}: ${price:,.2f}")
print()

Display the original prices again to show they are unchanged
print("Original Prices After Discount Applied:")
for index, price in enumerate(prices, 1):
 print(f"Product {index}: ${price:,.2f}")
print()

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

discounted_prices.py (cont’d.)

36
Program Output
Original Prices:
Product 1: $10.00
Product 2: $20.50
Product 3: $40.90
Product 4: $50.00
Product 5: $100.00

Enter first discount rate (as a percentage, e.g., 10 for 10%): 10
Enter second discount rate (as a percentage, e.g., 15 for 15%): 50
Discounted Prices (First Discount Rate):
Product 1: $9.00
Product 2: $18.45
Product 3: $36.81
Product 4: $45.00
Product 5: $90.00

Discounted Prices (Second Discount Rate):
Product 1: $5.00
Product 2: $10.25
Product 3: $20.45
Product 4: $25.00
Product 5: $50.00

37
Program Output (cont’d.)
Original Prices After Discount Applied:
Product 1: $10.00
Product 2: $20.50
Product 3: $40.90
Product 4: $50.00
Product 5: $100.00

38barista_pay.py
NUM_EMPLOYEES is used as a constant for the size of the list.
NUM_EMPLOYEES = 6

Create a list to hold employee hours.
hours = [0] * NUM_EMPLOYEES

Get each employee's hours worked.
for index in range(NUM_EMPLOYEES):

prompt = f'Enter the hours worked by employee {index + 1}: '
hours[index] = float(input(prompt))

Get the hourly pay rate.
pay_rate = float(input('Enter the hourly pay rate: '))

Display each employee's gross pay.
for index in range(NUM_EMPLOYEES):

gross_pay = hours[index] * pay_rate
print(f'Gross pay for employee {index + 1}: ${gross_pay:,.2f}')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

39
Program Output
Enter the hours worked by employee 1: 10
Enter the hours worked by employee 2: 20
Enter the hours worked by employee 3: 15
Enter the hours worked by employee 4: 40
Enter the hours worked by employee 5: 20
Enter the hours worked by employee 6: 18
Enter the hourly pay rate: 12.75
Gross pay for employee 1: $127.50
Gross pay for employee 2: $255.00
Gross pay for employee 3: $191.25
Gross pay for employee 4: $510.00
Gross pay for employee 5: $255.00
Gross pay for employee 6: $229.50

Two-Dimensional Lists

• Two-dimensional list: a list that contains other lists as its
elements
• Also known as nested list
• Common to think of two-dimensional lists as having rows and

columns
• Useful for working with multiple sets of data

• To process data in a two-dimensional list need to use
two indexes

• Typically use nested loops to process

40

>>> students = [['Joe', 'Kim'], ['Sam', 'Sue'], ['Kelly', 'Chris']]
>>> students
[['Joe', 'Kim'], ['Sam', 'Sue'], ['Kelly', 'Chris']]
>>>
>>> students[0]
['Joe', 'Kim']
>>> students[1]
['Sam', 'Sue']
>>> students[2]
['Kelly', 'Chris']
>>>
>>> students[0][0]
'Joe'

Two-Dimensional Lists (cont’d.)
41

Two-Dimensional Lists (cont’d.)
42

>>> # Example of a 2D list representing a 3x3 grid
>>> grid = [
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]
...]
>>>
>>> grid
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>>
>>> grid[0]
[1, 2, 3]
>>> grid[-1]
[7, 8, 9]
>>> grid[-1][-1]
9

Two-Dimensional Lists (cont’d.)
43

Constants for rows and columns
ROWS = 3
COLS = 4

Create a two-dimensional list.
values = [[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]]

Fill the list with numbers.
i = 1
for r in range(ROWS):

for c in range(COLS):
values[r][c] = i
i += 1

Display the numbers.
print(values)

44fill_2d_list.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Program Output
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

Example: cn101_scores.py

• The program manages and analyzes scores for different
sections of a course (CN101). It collects section names
and scores from the user, calculates the average score
for each section, prints the scores and averages for each
section, and identifies the maximum score across all
sections.
• This helps in evaluating the performance of students in

various sections and identifying the highest score
achieved.

45

cn101_scores.py pseudocode
46

BEGIN
 INPUT no_sections
 DECLARE section_scores AS list

 FOR each section from 1 to no_sections DO
 INPUT section_name
 DECLARE scores AS list
 PRINT "Input scores for section_name section (type -1 to stop):"
 DECLARE count AS 1

 WHILE True DO
 INPUT score
 IF score == -1 THEN
 BREAK
 END IF
 APPEND score TO scores
 INCREMENT count
 END WHILE

 INSERT section_name AT BEGINNING OF scores
 APPEND scores TO section_scores
 END FOR

cn101_scores.py pseudocode
47

 DECLARE section_averages AS list

 FOR each section_score IN section_scores DO
 SET section_name TO section_score[0]
 SET scores TO section_score[1:]
 CALCULATE average AS sum(scores) / len(scores)
 APPEND (section_name, average) TO section_averages
 END FOR

 FOR each section_score IN section_scores DO
 SET section_name TO section_score[0]
 SET scores TO section_score[1:]
 PRINT section_name, scores
 END FOR

 FOR each section_average IN section_averages DO
 SET section_name TO section_average[0]
 SET average TO section_average[1]
 PRINT section_name, "average score:", average
 END FOR

cn101_scores.py pseudocode
48

 DECLARE all_scores AS list

 FOR each section_score IN section_scores DO
 APPEND section_score[1:] TO all_scores
 END FOR

 SET max_score TO max(all_scores)
 PRINT "Maximum score:", max_score
END

49cn101_scores.py
no_sections = int(input('Input number of CN101 sections: ‘))

Input scores for each section.
section_scores = []
for _ in range(no_sections):

section_name = input('Input CN101 section name: ')
scores = []
print(f'Input scores for {section_name} section (type -1 to stop):')
count = 1
while True:

score = float(input(f'Input score #{count}: '))
if score == -1:
 break
scores.append(score)
count += 1

scores.insert(0, section_name)
section_scores.append(scores)

Calculates the average score for each section.
section_averages = []

for section_score in section_scores:
section_name = section_score[0]
scores = section_score[1:]
average = sum(scores) / len(scores)
section_averages.append((section_name, average))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

50cn101_scores.py (cont’d.)

Prints the scores for each section.
for section_score in section_scores:

section_name = section_score[0]
scores = section_score[1:]
print(f'{section_name}: {scores}')

Prints the average score for each section.
for section_average in section_averages:

section_name = section_average[0]
average = section_average[1]
print(f'{section_name} average score: {average:.2f}')

Finds the maximum score across all sections.
all_scores = []
for section_score in section_scores:
 all_scores += section_score[1:]
max_score = max(all_scores)
print(f'Maximum score: {max_score}')

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

51
Program Output
Input number of CN101 sections: 2
Input CN101 section name: 810001
Input scores for 810001 section (type -1 to stop):
Input score #1: 89.5
Input score #2: 78.4
Input score #3: 69.0
Input score #4: 65.5
Input score #5: 59.8
Input score #6: -1
Input CN101 section name: 740002
Input scores for 740002 section (type -1 to stop):
Input score #1: 88.8
Input score #2: 67.5
Input score #3: 65.5
Input score #4: 55.5
Input score #5: 71.2
Input score #6: 60.5
Input score #7: -1
810001: [89.5, 78.4, 69.0, 65.5, 59.8]
740002: [88.8, 67.5, 65.5, 55.5, 71.2, 60.5]
810001 average score: 72.44
740002 average score: 68.17
Maximum score: 89.5

List comprehension

• List comprehensions provide a concise way to create lists in
Python. They are more readable and often faster than using
traditional for-loop
• Syntax:

• expression: The expression that gets evaluated and added to the list.
• item: The variable that takes the value of the element from the iterable.
• iterable: A collection of elements (e.g., list, tuple, string) to iterate over.

52

list1 = [expression for item in iterable]

List comprehension (cont’d.)

• List comprehensions:

• For loop:

53

list1 = [expression for item in iterable]

list1 = []
for item in iterable:
 list1.append(expression)

List comprehension (cont’d.)
54

>>> list1 = []
>>> for num in range(1, 6):
... list1.append(num)
...
>>> list1
[1, 2, 3, 4, 5]
>>>
>>> list2 = [num for num in range(1, 6)]
>>> list2
[1, 2, 3, 4, 5]

List comprehension (cont’d.)
55

>>> list1 = []
>>> for num in range(1, 6):
... list1.append(num*2)
...
>>> list1
[2, 4, 6, 8, 10]
>>>
>>> list2 = [num*2 for num in range(1, 6)]
>>> list2
[2, 4, 6, 8, 10]

56cn101_scores2.py
no_sections = int(input('Input number of CN101 sections: '))

Input scores for each section.
section_scores = []
for _ in range(no_sections):

section_name = input('Input CN101 section name: ')
scores = []
print(f'Input scores for {section_name} section (type -1 to stop):')
count = 1
while True:

score = float(input(f'Input score #{count}: '))
if score == -1:
 break
scores.append(score)
count += 1

scores.insert(0, section_name)
section_scores.append(scores)

Calculates and returns the average score for each section.
section_averages = [

(section_score[0], sum(section_score[1:]) / len(section_score[1:]))
for section_score in section_scores

]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

57
Prints the scores for each section.
for section_score in section_scores:

section_name = section_score[0]
scores = section_score[1:]
print(f'{section_name}: {scores}')

Prints the average score for each section.
for section_name, average in section_averages:
 print(f'{section_name} average score: {average:.2f}')

Finds and returns the maximum score across all sections.
max_score = max([

score
for section_score in section_scores
for score in section_score[1:]

])

print(f'Maximum score: {max_score}')

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cn101_scores2.py (cont’d.)

Nested List Comprehensions
58

>>> list1 = []
>>> for x in [1, 2]:
... for y in [3, 4]:
... list1.append([x, y])
...
>>> list1
[[1, 3], [1, 4], [2, 3], [2, 4]]
>>>
>>> list2 = [[x, y] for x in [1, 2] for y in [3, 4]]
>>> list2
[[1, 3], [1, 4], [2, 3], [2, 4]]

Using if Condition in List Comprehensions

• List comprehensions can include an optional if condition
to filter items from the iterable before applying the
expression
• Syntax:

• expression: The expression that gets evaluated and added to the list.
• item: The variable that takes the value of the element from the iterable.
• iterable: A collection of elements (e.g., list, tuple, string) to iterate over.
• condition: A filtering condition that evaluates to True or False. Only items

that meet this condition are processed by the expression.

59

list1 = [expression for item in iterable if condition]

Using if Condition in List Comprehensions
(cont’d.)

60

>>> evens = [num for num in range(10) if num % 2 == 0]
>>> evens
[0, 2, 4, 6, 8]
>>>
>>> greater_5 = [x for x in range(10) if x > 5]
>>> greater_5
[6, 7, 8, 9]
>>>
>>> intersec = [num for num in evens if num in greater_5]
>>> intersec
[6, 8]

61employee_filter.py
Data structure containing departments and their employees
departments = [

[("Alice", 28), ("Bob", 34)], # HR Department
[("Charlie", 32), ("David", 25)], # IT Department
[("Eve", 29), ("Frank", 38)] # Finance Department

]

Nested list comprehension to get employee names above 30
employee_names_above_30 = [

name
for department in departments
for name, age in department
if age > 30

]

Print the result
print("Employees above 30 years old:", employee_names_above_30)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Program output
Employees above 30 years old: ['Bob', 'Charlie', 'Frank']

Tuples

• Tuple: an immutable sequence
• Very similar to a list
• Once it is created it cannot be changed
• Format: tuple_name = (item1, item2)
• Tuples support operations as lists

• Subscript indexing for retrieving elements
• Methods such as index
• Built in functions such as len, min, max, sum
• Slicing expressions
• The in, +, and * operators

62

Tuples (cont’d.)

• Tuples do not support the methods:
• append
• remove
• insert
• reverse
• sort

• Tuples do not support del statement

63

64
>>> my_tuple = (1, 2, 3, 4, 5)
>>> my_tuple
(1, 2, 3, 4, 5)
>>>
>>> names = ('Holly', 'Warren', 'Ashley')
>>> for name in names:
... print(name)
...
Holly
Warren
Ashley
>>>
>>> names = ('Somsak', 'Somsri', 'Somchai')
>>> for i in range(len(names)):
... print(names[i])
...
Somsak
Somsri
Somchai

Tuples (cont’d.)

• Advantages for using tuples over lists:
• Processing tuples is faster than processing lists
• Tuples are safe
• Some operations in Python require use of tuples

•list() function: converts tuple to list
•tuple() function: converts list to tuple

65

Note

• If you want to create a tuple with just one element, you
must write a trailing comma after the element’s value,
as shown here:

• If you omit the comma, you wil not create a tuple. For
example, the following statement simply assigns the
integer value 1 to the value varaiable:

66

my_tuple = (1,) # Creates a tuple with one element.

Value = (1) # Creates an integer.

67student_averages.py
The data structure is a list of tuples, where each tuple contains
a student’s name, math score, and science score
students = [

("Alice", 85, 78),
("Bob", 70, 82),
("Charlie", 90, 95),
("David", 65, 70),
("Eve", 88, 92)

]

Calculate the average score of each student.
student_averages = [

(name, (math + science) / 2)
for name, math, science in students

]

Create a list of students who have an average score above 75.
above_75_students = [

name
for name, average in student_averages
if average > 75

]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

68
Find the student with the highest average score.
highest_average_student = student_averages[0]
for student in student_averages:

if student[1] > highest_average_student[1]:
 highest_average_student = student

Print the results
print("Average scores of each student:")
for name, average in student_averages:
 print(f"{name}: {average:.2f}")

print("\nStudents with an average score above 75:")
print(above_75_students)

print(f"\nStudent with the highest average score: " +

 f"{highest_average_student[0]} with an average of " +
 f"{highest_average_student[1]:.2f}")

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

student_averages.py (cont’d.)

69
Program Output
Average scores of each student:
Alice: 81.50
Bob: 76.00
Charlie: 92.50
David: 67.50
Eve: 90.00

Students with an average score above 75:
['Alice', 'Bob', 'Charlie', 'Eve']

70employee_contact_search.py
List of employees where each employee is represented as a tuple.
(Employee ID, Employee Name, Email Address, Phone Number)
employees = [

(1, "Alice", "alice@example.com", "123-456-7890"),
(2, "Bob", "bob@example.com", "987-654-3210"),
(3, "Charlie", "charlie@example.com", "555-123-4567"),
(4, "David", "david@example.com", "444-555-6666"),
(5, "Eve", "eve@example.com", "111-222-3333")

]

Define the partial name to search for
search_name = input("Enter the partial name of the employee: ")
Define what to search for (phone or email)
search_type = input("Do you want to search for 'phone' or 'email'? ")

if search_type == "phone":

results = [
(employee[1], employee[3])
for employee in employees
if search_name in employee[1]

]
result_type = "Phone number"

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15

16
17
18
19
20
21
22
23

71
elif search_type == "email":

results = [
(employee[1], employee[2])
for employee in employees

 if search_name in employee[1].lower()
]
 result_type = "Email address"
else:
 print("Invalid search type. Please choose 'phone' or 'email'.")
 results = []
 result_type = ""

Print the results
if results:

for name, contact in results:
 print(f"{result_type} of {name}: {contact}")

else:
 print(f"No employee found with the partial name '{search_name}'")

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

employee_contact_search.py (cont’d.)

72
Program Output
Enter the partial name of the employee: Bob
Do you want to search for 'phone' or 'email'? email
Email address of Bob: bob@example.com

Program Output
Enter the partial name of the employee: ch
Do you want to search for 'phone' or 'email'? phone
Phone number of Charlie: 555-123-4567

Program Output
Enter the partial name of the employee: a
Do you want to search for 'phone' or 'email'? email
Email address of Alice: alice@example.com
Email address of Charlie: charlie@example.com
Email address of David: david@example.com

Program Output
Enter the partial name of the employee: b
Do you want to search for 'phone' or 'email'? emal
Invalid search type. Please choose 'phone' or 'email'.

Summary
• This chapter covered:
• Lists, including:

• Repetition and concatenation operators
• Indexing
• Techniques for processing lists
• Slicing and copying lists
• List methods and built-in functions for lists
• Two-dimensional lists
• List Comprehension

• Tuples, including:
• Immutability
• Difference from and advantages over lists

73

