
CN101
Lecture 5 (Part 1)

Lists and Tuples

Topics

• Sequences

• Introduction to Lists

• The Repetition Operator and Iterating over a List

• Indexing

• The len function

• Lists Are Mutable

•Concatenating Lists

• List Slicing

• The sorted function

2

Sequences

• Sequence: an object that contains multiple items of
data
• The items are stored in sequence one after another

•Python provides different types of sequences, including
lists and tuples
• The difference between these is that a list is mutable and a

tuple is immutable

3

Introduction to Lists

• List: an object that contains multiple data items
• Element: An item in a list

• Format: list1 = [item1, item2, etc.]

• Can hold items of different types

• list2 = [10, "Hello", 3.14, True]

4

Introduction to Lists (cont’d.)

• Here is a statement that creates a list of integers:
even_numbers = [2, 4, 6, 8, 10]

• The following is another example:
names = ['Molly', 'Steven', 'Will', 'Alicia', 'Adriana']

• A list can hold items of different types, as shown in the following
example: info = ['Alicia', 27, 1550.87]

5

Introduction to Lists (cont’d.)

• print function can be used to display an entire list

• list() function can convert certain types of objects
to lists

6

>>> numbers = list(range(1, 10, 2))

>>> numbers

[1, 3, 5, 7, 9]

>>> numbers = [5, 10, 15, 20]

>>> numbers

[5, 10, 15, 20]

The Repetition Operator and Iterating
over a List
•Repetition operator: makes multiple copies of a list and

joins them together
• The * symbol is a repetition operator when applied to a

sequence and an integer
• Sequence is left operand, number is right

• General format: list1 * n

7

>>> numbers = [1, 2, 3] * 3

>>> numbers

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The Repetition Operator and Iterating
over a List (cont’d.)
• You can iterate over a list using a for loop

• Format: for x in list1:

8

>>> numbers = [1, 2, 3, 4, 5]

>>> for n in numbers:

... print(n)

...

1

2

3

4

5

Indexing

• Index: a number specifying the position of an element
in a list
• Enables access to individual element in list

• Index of first element in the list is 0, second element is 1,
and n’th element is n-1

• Negative indexes identify positions relative to the end of the
list
• The index -1 identifies the last element, -2 identifies the next to last

element, etc.

• An IndexError exception is raised if an invalid index is
used

9

Indexing (cont’d.)
10

>>> numbers = [1, 2, 3, 4, 5]

>>> print(numbers[0], numbers[2], numbers[4])

1 3 5

>>> print(numbers[-1], numbers[-3], numbers[-5])

5 3 1

>>> numbers = [1, 2, 3, 4, 5]

>>> numbers[1] + numbers[3]

6

>>> numbers[-1] * numbers[-5]

5

The len function

•len function: returns the length of a sequence such as
a list
• Example: size = len(list1)

• Returns the number of elements in the list, so the index of
last element is len(list1)-1

• Can be used to prevent an IndexError exception when
iterating over a list with a loop

11

The len function (cont’d.)
12

>>> numbers = [1, 2, 3, 4, 5]

>>> len(numbers)

5

>>> numbers = [1, 2, 3, 4, 5]

>>> for i in range(len(numbers)):

... print(numbers[i])

...

1

2

3

4

5

Lists Are Mutable

•Mutable sequence: the items in the sequence can be
changed
• Lists are mutable, and so their elements can be changed

•An expression such as
•list1[1] = new_value can be used to assign a new

value to a list element

• Must use a valid index to prevent raising of an IndexError
exception

13

Lists Are Mutable (cont’d.)
14

>>> numbers = [1, 2, 3, 4, 5]

>>> numbers[1] = 20

>>> numbers

[1, 20, 3, 4, 5]

>>> numbers[3] *= 10

>>> numbers

[1, 20, 3, 40, 5]

>>> numbers[5] = 6

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list assignment index out of range

Lists Are Mutable (cont’d.)
15

>>> numbers = [1, 2, 3, 4, 5]

>>> for i in range(len(numbers)):

... numbers[i] *= 2

...

>>> numbers

[2, 4, 6, 8, 10]

Program Output

Enter the sales for each day.

Day #1: 1000

Day #2: 2000

Day #3: 3000

Day #4: 4000

Day #5: 5000

Here are the values you entered:

1000.0

2000.0

3000.0

4000.0

5000.0

16
The NUM_DAYS constant holds the number of

days that we will gather sales data for.

NUM_DAYS = 5

Create a list to hold the sales

for each day.

sales = [0] * NUM_DAYS

Create a variable to hold an index.

index = 0

print('Enter the sales for each day.')

Get the sales for each day.

while index < NUM_DAYS:

sales[index] = float(input(f'Day #{index + 1}: '))

index += 1

Display the values entered.

print('Here are the values you entered:')

for value in sales:

print(value)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

sales_list.py

Concatenating Lists

•Concatenate: join two things together

• The + operator can be used to concatenate two lists
– Cannot concatenate a list with another data type, such as a

number

• The += augmented assignment operator can also be
used to concatenate lists

17

>>> list1 = [1, 2, 3, 4]

>>> list2 = [5, 6, 7, 8]

>>> list3 = list1 + list2

>>> list3

[1, 2, 3, 4, 5, 6, 7, 8]

Concatenating Lists (cont’d.)
18

>>> girl_names = ['Joanne', 'Karen', 'Lori']

>>> girl_names += ['Jenny', 'Kelly']

>>> girl_names

['Joanne', 'Karen', 'Lori', 'Jenny', 'Kelly']

19employees1.py

List of employee names

employees = ["Alice", "Bob"]

print(f"List of employees: {employees}")

User input for a new employee

new_employee = input("Enter the name of the new employee: ")

Adding the new employee using concatenation

employees = employees + [new_employee]

Display the updated list of employees

print("List of employees after adding a new one:")

for index in range(len(employees)):

print(f"{index + 1}. {employees[index]}")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Program Output

List of employees: ['Alice', 'Bob']

Enter the name of the new employee: Peter

List of employees after adding a new one:

1. Alice

2. Bob

3. Peter

20employees2.py

List of employee names

employees = ["Alice", "Bob", "Peter"]

print(f"List of employees: {employees}")

User input for the name to search and the new name

old_name = input("Enter the name of the employee to replace: ")

new_name = input("Enter the new name: ")

Searching for the name and replacing it

for index in range(len(employees)):

if employees[index] == old_name:

employees[index] = new_name

break

Display the updated list of employees

print(f"Updated list of employees: {employees}")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Program Output

List of employees: ['Alice', 'Bob', 'Peter']

Enter the name of the employee to replace: Bob

Enter the new name: David

Updated list of employees: ['Alice', 'David', 'Peter']

List Slicing

• List slicing in Python is a technique used to extract a
subset of elements from a list. It allows you to access a
portion of the list by specifying a range of indices.
The basic syntax for list slicing is:

 list[start:stop:step]

• start: The index where the slice begins (inclusive).

• stop: The index where the slice ends (exclusive).

• step: The step or stride between each element in the slice.

21

List Slicing (cont’d.)

Basic Slicing:

Omitting Start and Stop:

22

>>> list1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list1[2:5]

[2, 3, 4]

>>> list1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list1[:5]

[0, 1, 2, 3, 4]

>>> list1[5:]

[5, 6, 7, 8, 9]

>>> list1[:]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

List Slicing (cont’d.)

Using Negative Indices:

Specifying a Step

23

>>> list1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list1[-5:]

[5, 6, 7, 8, 9]

>>> list1[:-5]

[0, 1, 2, 3, 4]

>>> list1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list1[0:9:2]

[0, 2, 4, 6, 8]

>>> list1[1::2]

[1, 3, 5, 7, 9]

List Slicing (cont’d.)

Using Negative Step:

24

>>> list1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list1[-1::-2]

[9, 7, 5, 3, 1]

>>> list1[5:0:-1]

[5, 4, 3, 2, 1]

>>> list1[5:0:-2]

[5, 3, 1]

25get_top_scores.py

Define the scores list

scores = [98, 95, 93, 89, 87, 85, 80, 75]

Get the number of top scores to retrieve from the user

num_top = int(input("Enter the number of top scores to retrieve: "))

Retrieve the top scores

top_scores = scores[:num_top]

Print the top scores

print(f"Top {num_top} scores: {top_scores}")

1

2

3

4

5

6

7

8

9

10

11

Program Output

Enter the number of top scores to retrieve: 2

Top 2 scores: [98, 95]

Program Output

Enter the number of top scores to retrieve: 5

Top 5 scores: [98, 95, 93, 89, 87]

26employees3.py

employees = ["Alice", "Bob", "Peter"]

print(f"List of employees: {employees}")

User input for the name to search and remove

name_to_remove = input("Enter the name of the employee to remove: ")

Searching for the name and removing it

for index in range(len(employees)):

if employees[index] == name_to_remove:

employees = employees[:index] + employees[index+1:]

break

Display the updated list of employees

print(f"Updated list of employees: {employees}")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Program Output

List of employees: ['Alice', 'Bob', 'Peter']

Enter the name of the employee to remove: Bob

Updated list of employees: ['Alice', 'Peter']

27temperature.py

Example temperature data for a month (30 days)

temperatures = [

22.5, 23.0, 21.5, 22.0, 24.5, 25.0, 23.5,

24.0, 26.5, 27.0, 25.5, 26.0, 28.5, 29.0,

30.5, 28.0, 27.5, 28.0, 29.5, 30.0, 31.5,

32.0, 33.5, 31.0, 30.5, 32.0, 33.5, 34.0,

35.5, 36.0

]

Get user input for operations

week_number = int(input("Enter the week number (1-4) to view

temperatures: "))

num_hottest_days = int(input("Enter the number of hottest days to

retrieve: "))

start_day = int(input("Enter the start day for average temperature

calculation (1-30): "))

end_day = int(input("Enter the end day for average temperature

calculation (1-30): "))

Extract weekly temperatures

start = (week_number - 1) * 7

end = week_number * 7

weekly_temperatures = temperatures[start:end]

print(f"Temperatures for week {week_number}: {weekly_temperatures}")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

28temperature.py (cont’d.)

Find the hottest days

hottest_days = sorted(temperatures, reverse=True)[:num_hottest_days]

print(f"The top {num_hottest_days} hottest days: {hottest_days}")

Calculate average temperature for a specified period

period_temperatures = temperatures[start_day-1:end_day]

sum_temperatures = 0

for temperature in period_temperatures:

sum_temperatures += temperature

average_temperature = sum_temperatures / len(period_temperatures)

print(f"Average temperature from day {start_day} to day {end_day}:

{average_temperature:.2f}°C")

22

23

24

25

26

27

28

29

30

31

32

33

Program Output

Enter the week number (1-4) to view temperatures: 2

Enter the number of hottest days to retrieve: 3

Enter the start day for average temperature calculation (1-30): 10

Enter the end day for average temperature calculation (1-30): 20

Temperatures for week 2: [24.0, 26.5, 27.0, 25.5, 26.0, 28.5, 29.0]

The top 3 hottest days: [36.0, 35.5, 34.0]

Average temperature from day 10 to day 20: 28.14°C

The sorted function

• The sorted() function in Python is used to return a new
sorted list from the elements of any iterable (like a list,
tuple, or string).

29

sorted(iterable, key=None, reverse=False)

Parameters
• iterable: The sequence (like a list, tuple, string, etc.) that you want to sort.
• key (optional): A function that serves as a key for the sort comparison. Defaults to

None, which means the elements are compared directly.
• reverse (optional): A boolean value. If True, the sorted list is reversed (or sorted in

descending order). Defaults to False.

30sorted_function.py

numbers = [4, 2, 9, 1, 5, 6]

sorted_numbers = sorted(numbers)

print(sorted_numbers)

words = ["banana", "apple", "cherry", "date"]

sorted_words = sorted(words)

print(sorted_words)

numbers = [4, 2, 9, 1, 5, 6]

sorted_numbers_desc = sorted(numbers, reverse=True)

print(sorted_numbers_desc)

1

2

3

4

5

6

7

8

9

10

11

Program Output

[1, 2, 4, 5, 6, 9]

['apple', 'banana', 'cherry', 'date']

[9, 6, 5, 4, 2, 1]

31product_prices.py

List of products and their prices

products = ["Laptop", "Smartphone", "Tablet", "Headphones", "Smartwatch"]

prices = [1200.00, 800.00, 400.00, 100.00, 200.00]

Original products and prices

print("\nOriginal products and prices:")

for index in range(len(products)):

print(f"{products[index]}: ${prices[index]:.2f}")

User input for the product to modify and the new price

product_to_modify = input("\nEnter the name of the product to modify the

price: ")

new_price = float(input(f"Enter the new price for {product_to_modify}: "))

Searching for the product and updating its price using list slicing

found = False

for i in range(len(products)):

if products[i] == product_to_modify:

prices = prices[:i] + [new_price] + prices[i+1:]

found = True

break

if not found:

print(f"Product named {product_to_modify} not found in the list.")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

32product_prices.py (cont’d.)

Updated products and prices

print("\nUpdated products and prices:")

for index in range(len(products)):

print(f"{products[index]}: ${prices[index]:.2f}")

25

26

27

28

Program Output

Original products and prices:

Laptop: $1200.00

Smartphone: $800.00

Tablet: $400.00

Headphones: $100.00

Smartwatch: $200.00

Enter the name of the product to modify the price: Tablet

Enter the new price for Tablet: 350

Updated products and prices:

Laptop: $1200.00

Smartphone: $800.00

Tablet: $350.00

Headphones: $100.00

Smartwatch: $200.00

	Slide 1: CN101
	Slide 2: Topics
	Slide 3: Sequences
	Slide 4: Introduction to Lists
	Slide 5: Introduction to Lists (cont’d.)
	Slide 6: Introduction to Lists (cont’d.)
	Slide 7: The Repetition Operator and Iterating over a List
	Slide 8: The Repetition Operator and Iterating over a List (cont’d.)
	Slide 9: Indexing
	Slide 10: Indexing (cont’d.)
	Slide 11: The len function
	Slide 12: The len function (cont’d.)
	Slide 13: Lists Are Mutable
	Slide 14: Lists Are Mutable (cont’d.)
	Slide 15: Lists Are Mutable (cont’d.)
	Slide 16
	Slide 17: Concatenating Lists
	Slide 18: Concatenating Lists (cont’d.)
	Slide 19
	Slide 20
	Slide 21: List Slicing
	Slide 22: List Slicing (cont’d.)
	Slide 23: List Slicing (cont’d.)
	Slide 24: List Slicing (cont’d.)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: The sorted function
	Slide 30
	Slide 31
	Slide 32

