
CN101
Lecture 4

Repetition Structures

Topics

• Introduction to Repetition Structures

• The while Loop: a Condition-Controlled Loop

• The for Loop: a Count-Controlled Loop

• Calculating a Running Total

• Sentinels

• Input Validation Loops

• Nested Loops

2

Introduction to Repetition Structures

• Often have to write code that performs the same task
multiple times
• Disadvantages to duplicating code

• Makes program large

• Time consuming

• May need to be corrected in many places

• Repetition structure: makes computer repeat included
code as necessary
• Includes condition-controlled loops and count-controlled

loops

3

The while Loop: a Condition-
Controlled Loop
•while loop: while condition is true, do something

• Two parts:
• Condition tested for true or false value

• Statements repeated as long as condition is true

• In flow chart, line goes back to previous part

• General format:

4

The while Loop: a Condition-
Controlled Loop (cont’d.)
• In order for a loop to stop executing, something has to

happen inside the loop to make the condition false

• Iteration: one execution of the body of a loop

•while loop is known as a pretest loop
– Tests condition before performing an iteration

• Will never execute if condition is false to start with

• Requires performing some steps prior to the loop

5

6

7

8

9

10

11

Infinite Loops

• Loops must contain within themselves a way to
terminate
• Something inside a while loop must eventually make the

condition false

• Infinite loop: loop that does not have a way of stopping
• Repeats until program is interrupted

• Occurs when programmer forgets to include stopping code in
the loop

12

The for Loop: a Count-Controlled
Loop
• Count-Controlled loop: iterates a specific number of

times
Use a for statement to write count-controlled loop

• Designed to work with sequence of data items

– Iterates once for each item in the sequence

• General format:

 for variable in [val1, val2, etc]:

 statements

• Target variable: the variable which is the target of the assignment at
the beginning of each iteration

13

14

15

16

17

Using the range Function with the
for Loop
• The range function simplifies the process of writing a
for loop
• range returns an iterable object

• Iterable: contains a sequence of values that can be iterated over

•range characteristics:
• One argument: used as ending limit

• Two arguments: starting value and ending limit

• Three arguments: third argument is step value

18

19

20

Using the Target Variable Inside the
Loop
• Purpose of target variable is to reference each item in a

sequence as the loop iterates

• Target variable can be used in calculations or tasks in
the body of the loop

Example: calculate square of each number in a range

21

22

Letting the User Control the Loop
Iterations
• Sometimes the programmer does not know exactly how

many times the loop will execute

• Can receive range inputs from the user, place them in
variables, and call the range function in the for clause
using these variables

Be sure to consider the end cases: range does not include
the ending limit

23

24

25

26

27

Generating an Iterable Sequence that Ranges
from Highest to Lowest

• The range function can be used to generate a
sequence with numbers in descending order
• Make sure starting number is larger than end limit, and step

value is negative

• Example: range (5, 0, -1)

28

Calculating a Running Total

• Programs often need to calculate a total of a series of
numbers
• Typically include two elements:

• A loop that reads each number in series

• An accumulator variable

• Known as program that keeps a running total: accumulates
total and reads in series

• At end of loop, accumulator will reference the total

29

Calculating a Running Total (cont’d.)
30

31

32

The Augmented Assignment
Operators
• In many assignment statements, the variable on the left

side of the = operator also appears on the right side of
the = operator

• Augmented assignment operators: special set of
operators designed for this type of job
• Shorthand operators

33

The Augmented Assignment
Operators (cont’d.)

34

Sentinels

• Sentinel: special value that marks the end of a sequence
of items
• When program reaches a sentinel, it knows that the end of

the sequence of items was reached, and the loop terminates

• Must be distinctive enough so as not to be mistaken for a
regular value in the sequence

• Example: when reading an input file, empty line can be used
as a sentinel

35

36

37

Input Validation Loops

• Computer cannot tell the difference between good data
and bad data
• If user provides bad input, program will produce bad output

• GIGO: garbage in, garbage out

• It is important to design program such that bad input is never
accepted

38

Input Validation Loops (cont’d.)

• Input validation: inspecting input before it is processed
by the program
• If input is invalid, prompt user to enter correct data

• Commonly accomplished using a while loop which repeats
as long as the input is bad

• If input is bad, display error message and receive another set of data

• If input is good, continue to process the input

39

Input Validation Loops (cont’d.)
40

41

42

Nested Loops

• Nested loop: loop that is contained inside another loop
• Example: analog clock works like a nested loop

• Hours hand moves once for every twelve movements of the minutes
hand: for each iteration of the “hours,” do twelve iterations of
“minutes”

• Seconds hand moves 60 times for each movement of the minutes
hand: for each iteration of “minutes,” do 60 iterations of “seconds”

43

44

Nested Loops (cont’d.)

• Key points about nested loops:
• Inner loop goes through all of its iterations for each iteration

of outer loop

• Inner loops complete their iterations faster than outer loops

• Total number of iterations in nested loop:
number_iterations_inner x

 number_iterations_outer

45

46

47

48

49

50

Break statement

• The break statement is used to exit a loop prematurely

• It can be used in both for loops and while loops

• When break is encountered, the loop is immediately
terminated

• Program execution continues with the next statement
after the loop

•break is useful for ending loops based on certain
conditions

51

Break examples
52

for i in range(1, 6):

 if i == 4:

 break

 print(i)

Program Output:

1

2

3

count = 0

while True:

 count += 1

 if count == 5:

 break

 print(count)

Program Output:

1

2

3

4

Break examples: Input Validation
53

check Age must be >= 0

while True:

 age = int(input('Enter age: '))

 if age >= 0:

 break

 print('Invalid age')

print(f'Your age is {age}.')

Program Output:

Enter age: -1

Invalid age

Enter age: 18

Your age is 18.

Continue statement

• The continue command is used inside loops (for
and while)

• It skips the rest of the current iteration and moves to
the next one/iteration

• Useful when you want to skip specific items in a loop

• Helps avoid nested conditional code

• Improves readability and efficiency of your code

54

Continue examples
55

for num in range(8):

 if num % 2 == 0:

 continue

 print(num)

Program Output:

1

3

5

7

count = 0

while count < 5:

 count += 1

 if count == 3:

 continue

 print(count)

Program Output:

1

2

4

5

Summary

• This chapter covered:
• Repetition structures, including:

• Condition-controlled loops

• Count-controlled loops

• Nested loops

• Infinite loops and how they can be avoided

• range function as used in for loops

• Calculating a running total and augmented assignment
operators

• Use of sentinels to terminate loops

• break and continue to control loop

56

	Slide 1: CN101
	Slide 2: Topics
	Slide 3: Introduction to Repetition Structures
	Slide 4: The while Loop: a Condition-Controlled Loop
	Slide 5: The while Loop: a Condition-Controlled Loop (cont’d.)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Infinite Loops
	Slide 13: The for Loop: a Count-Controlled Loop
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Using the range Function with the for Loop
	Slide 19
	Slide 20
	Slide 21: Using the Target Variable Inside the Loop
	Slide 22
	Slide 23: Letting the User Control the Loop Iterations
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Generating an Iterable Sequence that Ranges from Highest to Lowest
	Slide 29: Calculating a Running Total
	Slide 30: Calculating a Running Total (cont’d.)
	Slide 31
	Slide 32
	Slide 33: The Augmented Assignment Operators
	Slide 34: The Augmented Assignment Operators (cont’d.)
	Slide 35: Sentinels
	Slide 36
	Slide 37
	Slide 38: Input Validation Loops
	Slide 39: Input Validation Loops (cont’d.)
	Slide 40: Input Validation Loops (cont’d.)
	Slide 41
	Slide 42
	Slide 43: Nested Loops
	Slide 44
	Slide 45: Nested Loops (cont’d.)
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Break statement
	Slide 52: Break examples
	Slide 53: Break examples: Input Validation
	Slide 54: Continue statement
	Slide 55: Continue examples
	Slide 56: Summary

