CN101

Lecture 4
Repetition Structures

Topics

e Introduction to Repetition Structures

e The while Loop: a Condition-Controlled Loop
e The for Loop: a Count-Controlled Loop

e Calculating a Running Total

e Sentinels

e Input Validation Loops

e Nested Loops

Introduction to Repetition Structures

e Often have to write code that performs the same task
multiple times

* Disadvantages to duplicating code
e Makes program large
e Time consuming
e May need to be corrected in many places

e Repetition structure: makes computer repeat included
code as necessary

* Includes condition-controlled loops and count-controlled
loops

The while Loop: a Condition-
Controlled Loop

while loop: while condition is true, do something

* Two parts:
e Condition tested for true or false value
e Statements repeated as long as condition is true

* In flow chart, line goes back to previous part

* General format:

—f

while condition:
statement

True
Statement(s)

statement

etc.

False

The while Loop: a Condition-
Controlled Loop (cont’d.)

e |n order for a loop to stop executing, something has to
happen inside the loop to make the condition false

e [teration: one execution of the body of a loop

*while loop is known as a pretest loop

— Tests condition before performing an iteration
e Will never execute if condition is false to start with
e Requires performing some steps prior to the loop

Program 4-1 (commission.py)

This program calculates sales commissions.

1

2

3 # Create a variable to control the Toop.
4 keep_going = 'y

5

6 # Calculate a series of commissions.

/ while keep_going == 'y':

8 # Get a salesperson's sales and commission rate.

g sales = float(input('Enter the amount of sales: "))
10 comm_rate = float(input('Enter the commission rate: "))
11
12 # Calculate the commission.
13 commission = sales * comm_rate

14

15 # Display the commission.

16 print('The commission is §',

17 format (commission, ',.2f'), sep="")

18

19 # See if the user wants to do another one.
20 keep_going = input('Do you want to calculate another ' +

21 "‘commission (Enter y for yes): ')

Program Output (with input shown in bold)

Enter the amount of sales: 10000.00 [Enter]

Enter the commission rate: 0.10 (Enter]

The commission is $1,000.00

Do you want to calculate another commission (Enter y for yes): y (Enter]
Enter the amount of sales: 20000.00 [Enter)

Enter the commission rate: 0.15 (Enter]

The commission is $3,000.00

Do you want to calculate another commission (Enter y for yes): y
Enter the amount of sales: 12000.00 [(Enter)

Enter the commission rate: 0.10 (Enter]

The commission 1s $1,200.00

Do you want to calculate another commission (Enter y for yes): n [(Enter)

This condition is tested.

while keep_going == 'y':
Get a salesperson’'s sales and commission rate.
sales = float(input('Enter the amount of sales: "))

I the condition is true, comm_rate = float(input('Enter the commission rate: "))

these statements are
executed, and then the
loop starts over.

Calculate the commission.
commission = sales * comm_rate

If the condition is false,
these statements are
skipped, and the
program exits the loop.

Display the commission.
print('The commission is $',
format (commission, ',.2T'), sep="")

See if the user wants to do another one.
keep_going = input('Do you want to calculate another ' +
‘commission (Enter y for yes): ')

Assign 'y" to keep_going

keep_going =

¥

True

'

Prompt the user o enter
the amount of sales and
asgign it to sales.

!

Prompt fhe user to enier
the commission rate and
assign it o comm_rate

'

L]

commission = salas
comm_rate

Display the

commission

!

Prompt the user: To you

want 1o calculate another

commission? (Enter y for

yes) and assign the input
to keep_going.

Program 4-2

o~ 0N & WM =

w0

temperature

W= O W O~ a N o Whkhy= 0O

(temperature.py)

This program assists a technician in the process
of checking a substance's temperature.

Named constant to represent the maximum
temperature.
MAX_TEMP = 102.5

Get the substance's temperature.

= float(input("Enter the substance's Celsius temperature: "))

As long as necessary, instruct the user to
adjust the thermostat.
while temperature > MAX_TEMP:
print('The temperature is too high."')
print('Turn the thermostat down and wait')
print('5 minutes. Then take the temperature')
print('again and enter it.")
temperature = float(input('Enter the new Celsius temperature: '))

Remind the user to check the temperature again
in 15 minutes.

print('The temperature is acceptable.')
print(‘Check it again in 15 minutes.')

10

11

Program Output (with input shown in bold)

Enter the substance's Celsius temperature: 104.7 (Enter]
The temperature is too high.

Turn the thermostat down and wait

5 minutes. Take the temperature

again and enter it.

Enter the new Celsius temperature: 103.2 [Enter]
The temperature is too high.

Turn the thermostat down and wait

5 minutes. Take the temperature

again and enter 1it.

Enter the new Celsius temperature: 102.1
The temperature is acceptable.

Check 1t again in 15 minutes.

Infinite Loops

e Loops must contain within themselves a way to
terminate

 Something inside a while loop must eventually make the
condition false

e Infinite loop: loop that does not have a way of stopping

* Repeats until program is interrupted

* Occurs when programmer forgets to include stopping code in
the loop

The for Loop: a Count-Controlled
Loop

e Count-Controlled loop: iterates a specific number of

times

Use a for statement to write count-controlled loop
e Designed to work with sequence of data items
— Iterates once for each item in the sequence
e General format:
for variable in [vall, valZ?2, etc]:
statements

e Target variable: the variable which is the target of the assignment at
the beginning of each iteration

Program 4-4 (simple_loop1.py)

This program demonstrates a simple for loop
that uses a list of numbers.

print('I will display the numbers 1 through 5.")
for num in [1, 2, 3, 4, 5]:
print(num)

N & W N =

Program Output

I will display the numbers 1 through 5.
1

N B o M

14

1st iteration:

2nd iteration:

3rd iteration:

4th iteration:

5th iteration:

for

for

for

for

for

£\

num in [1, 2, 3, 4, 5]:

print(num)

N\

num in [1, 2, 3, 4, 5]:

print(num)

N

num in [1, 2, 3, 4, 5]:

print(num)

N

num in [1, 2, 3, 4, 5]:

print(num)

num in [1, 2, 3, 4, 5]:

print(num)

15

Program 4-5 (simple_loop2.py)

This program also demonstrates a simple for
loop that uses a list of numbers.

for num in [1, 3, 5, 7, 9]:

1
2
3
4 print('I will display the odd numbers 1 through 9.")
5
§ print(num)

Program Output

I will display the odd numbers 1 through 9.
1

D ~ o W

16

Program 4-6 (simple_loop3.py)

This program also demonstrates a simple for
loop that uses a list of strings.

1
2
3
4 for name in ['Winken', 'Blinken', 'Nod']:
5 print (name)

Program Output

Winken
Blinken
Nod

17

Using the range Function with the
for Loop

e The range function simplifies the process of writing a
for loop

* range returns an iterable object
e |terable: contains a sequence of values that can be iterated over
* range characteristics:
* One argument: used as ending limit

* Two arguments: starting value and ending limit
* Three arguments: third argument is step value

>>> for num in range(5):

A WNES®

print(num)

>>> for num in range(l, 5):

£2WN R

print(num)

>>> for num in range(l, 10, 2):

o~y W

printCnum)

19

Program 4-7 (simple_loop4.py)

This program demonstrates how the range
function can be used with a for loop.

for x in range(5):

1

2

3

4 # Print a message five times.
5

6 print('Hello world")

Program Output

Hello world
Hello world
Hello world
Hello world
Hello world

20

Jsing the Target Variable Inside the
NeleJe

e Purpose of target variable is to reference each item in a
sequence as the loop iterates

e Target variable can be used in calculations or tasks in
the body of the loop

Example: calculate square of each number in a range

Number Square
1
4
9
16
25
36
49
64
81
100

[

o N 08~ Oy ba b Ll

[y

Program 4-8 (squares.py)

0 =l O O = W N —

—_ i =k
N = O D

13

This program uses a loop to display a
table showing the numbers 1 through 10
and their squares.

Print the table headings.
print('Number\tSquare')

Print the numbers 1 through 10

and their squares.

for number in range(1, 11):
square = number**2
print(number, '\t', square)

22

Program Output

Number Square

— O 0O ~ OO0 & W kN =
Ll
(o3

o

100

_etting the User Control the Loop
terations

e Sometimes the programmer does not know exactly how
many times the loop will execute

e Can receive range inputs from the user, place them in
variables, and call the range function in the for clause
using these variables

Be sure to consider the end cases: range does not include
the ending limit

Program 4-10 (user_squares1.py)

1 # This program uses a loop to display a

2 # table of numbers and their squares.

3

4 # Get the ending Timit.

5 print('This program displays a 1ist of numbers')
6 print('(starting at 1) and their squares.')
7/ end = int(input('How high should I go? '))
8

9 # Print the table headings.
10 print()
11 print('Number\tSquare')
12 print('-------------- ")
13
14 # Print the numbers and their squares.
15 for number 1in range(1, end + 1):
16 square = number**2
17 print(number, "\t', square)

24

Program Output (with input shown in bold)

This program displays a 1ist of numbers
(starting at 1) and their squares.
How high should I go? 5 (Enter)

25

Program 4-11 (user_squares2.py)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

This program uses a loop to display a
table of numbers and their squares.

Get the starting value.

print('This program displays a 1list of numbers')
print('and their squares.')

start = int(input('Enter the starting number: "))

Get the ending limit.
end = int(input('How high should I go? "))

Print the table headings.

print()
print('Number\tSquare")
print('-------------- ")

Print the numbers and their squares.
for number 1in range(start, end + 1):
square = number**2
print(number, '\t', square)

26

27

Program Output (with input shown in bold)

This program displays a list of numbers and their squares.
Enter the starting number: 5 (Enter]
How high should I go? 10 (Enter)

Number Square

0 100

Generating an lterable Sequence that Ranges
from Highest to Lowest

e The range function can be used to generate a
sequence with numbers in descending order

* Make sure starting number is larger than end limit, and step
value is negative

e Example: range (5, 0, -1)

>>> num in range(5, 0, -1):
print(num)

N WR U

Calculating a Running Total

* Programs often need to calculate a total of a series of
numbers

e Typically include two elements:
e A |oop that reads each number in series
e An accumulator variable

* Known as program that keeps a running total: accumulates
total and reads in series

* At end of loop, accumulator will reference the total

Calculating a Running Total (cont’d.)
{

Set accumulatorio 0

l...

Is there another Add the number to the
Read the next number
number to read? accumulator

Program 4-12 (sum_numbers.py)

This program calculates the sum of a series
of numbers entered by the user.

MAX = 5 # The maximum number

1
2
3
4
5
6 # Initialize an accumulator variable.
/7 total = 0.0
8

9 # Explain what we are doing.
10 print('This program calculates the sum of')
11 print(MAX, 'numbers you will enter.')
12
13 # Get the numbers and accumulate them.
14 for counter in range(MAX):

15 number = int(input('Enter a number: '))
16 total = total + number
17

18 # Display the total of the numbers.
19 print('The total is', total)

Program Output (with input shown in bold)

This program calculates the sum of
5 numbers you will enter.
Enter a number: 1 (Enter
Enter a number: 2
Enter a number: 3
Enter a number: 4 |(Enter
5
0

Enter a number:
The total is 15.

The Augmented Assignment
Operators

* |n many assignment statements, the variable on the left

side of the = operator also appears on the right side of
the = operator

e Augmented assignment operators: special set of
operators designed for this type of job
* Shorthand operators

The Augmented Assignment

Operators (cont’d.)

34

Statement What It Does Value of x after the Statement

X =X + 4 Add 4 to x 10

X = X — Subtracts 3 from x 3

X =x * 10 Multiplies x by 10 60

X =x [/ 2 Divides x by 2 3

X =x % 4 Assigns the remainder of X / 4 to X
Operator Example Usage Equivalent To
+= X += 5 X=X +5
—= y —= 2 y=y -2
*= z *= 10 z=2z*10
/= al/=b a=alb
%= c % 3 c=c¢c%3

Sentinels

e Sentinel: special value that marks the end of a sequence
of items

* When program reaches a sentinel, it knows that the end of
the sequence of items was reached, and the loop terminates

* Must be distinctive enough so as not to be mistaken for a
regular value in the sequence

 Example: when reading an input file, empty line can be used
as a sentinel

Program 4-13 (property_tax.py)
This program displays property taxes.

TAX_FACTOR = 0.0065 # Represents the tax factor.

print('Enter the property lot number')
print('or enter 0 to end.')
lot = int(input('Lot number: '))
9
10 # Continue processing as long as the user
11 # does not enter lot number O.
12 while lot ! = 0:

1
2
3
4
5 # Get the first Tot number.
6
5
8

13 # Get the property value.

14 value = float(input('Enter the property value: '))
15

16 # Calculate the property's tax.

17 tax = value * TAX FACTOR

18

19 # Display the tax.

20 print('Property tax: $', format(tax, ',.2f'), sep='")
21

22 # Get the next lot number.

23 print('Enter the next Tot number or'")

24 print('enter 0 to end."')

25 lot = int(input('Lot number: '))

Program Output (with input shown in bold)

Enter the property lot number

or enter 0 to end.

Lot number: 100 (Enter)

Enter the property value: 100000.00 (Enter)
Property tax: $650.00.

Enter the next Tot number or

enter 0 to end.

Lot number: 200 (Enter)

Enter the property value: 5000.00 (Enter)
Property tax: $32.50.

Enter the next Tot number or

enter 0 to end.

Lot number: O

37

Input Validation Loops

e Computer cannot tell the difference between good data
and bad data
* |f user provides bad input, program will produce bad output

* GIGO: garbage in, garbage out
* |tis important to design program such that bad input is never
accepted

Input Validation Loops (cont’d.)

e Input validation: inspecting input before it is processed
by the program
 |f inputis invalid, prompt user to enter correct data

e Commonly accomplished using a while loop which repeats
as long as the input is bad
e If input is bad, display error message and receive another set of data

e |f input is good, continue to process the input

Input Validation Loops (cont’d.)

Program 4-16 (retail_with_validation.py)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

This program calculates retail prices.

MARK_UP = 2.5 # The markup percentage
another = 'y' # Variable to control the Tloop.

Process one or more items.
while another == 'y' or another == 'Y':
Get the item's wholesale cost.
wholesale = float(input("Enter the item's " +
"wholesale cost: "))

Validate the wholesale cost.
while wholesale < 0:

print('ERROR: the cost cannot be negative.')
wholesale = float(input('Enter the correct' +
'wholesale cost: '))

Calculate the retail price.
retail = wholesale * MARK_UP

Display the retail price.

print('Retail price: $', format(retail, ',.2f"'), sep='")

Do this again?
another = input('Do you have another item? ' +
"(Enter y for yes): ')

41

42

Program Output (with input shown in bold)

Enter the item's wholesale cost: -.50 (Enter)
ERROR: the cost cannot be negative.

Enter the correct wholesale cost: 0.50 [Enter]
Retail price: $1.25.
Do you have another item? (Enter y for yes): n|Enter]

Nested Loops

e Nested loop: loop that is contained inside another loop

 Example: analog clock works like a nested loop

e Hours hand moves once for every twelve movements of the minutes
hand: for each iteration of the “hours,” do twelve iterations of
“minutes”

e Seconds hand moves 60 times for each movement of the minutes
hand: for each iteration of “minutes,” do 60 iterations of “seconds”

I3 there another
value in the hours
list?

Weg (True)

Assign the next value in
e hours list to the
hour variable.

rl

I3 there another
value in the
minuies list?

Mo (False)

Assign the next value
in the minutes list 1o

the minute varisble.

value in the
seconds list?

Mo (Falss)

sacond

Assign the nedt value in
the seconds list o the

varnahke.

print{hours, ':",
:', seconds)

minutes,

I

44

Nested Loops (cont’d.)

* Key points about nested loops:

* Inner loop goes through all of its iterations for each iteration
of outer loop

* Inner loops complete their iterations faster than outer loops

* Total number of iterations in nested loop:
number i1terations inner X

number 1terations outer

Program 4-17 (test_score_averages.py)

1
2
3
4
5
&
.
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

This program averages test scores. It asks the user for the
number of students and the number of test scores per student.

Get the number of students.
num_students = int(input('How many students do you have? "))

Get the number of test scores per student.
num_test_scores = int(input('How many test scores per student? "))

Determine each student's average test score.
for student in range(num_students):
Initialize an accumulator for test scores.
total = 0.0
Get a student's test scores.
print('Student number', student + 1)
print(’ ")
for test_num in range(num_test_scores).
print('Test number', test_num + 1, end="")
score = Tloat(input(': "))
Add the score to the accumulator.
total += score

Calculate the average test score for this student.
average = total / num_test_scores

Display the average.

print('The average for student number', student + 1,
"is:', average)

print()

46

Program Output (with input shown in bold)

How many students do you have? 3 [(Enter)
How many test scores per student? 3 (Enter]

Student number 1

Test number 1:
Test number 2:
Test number 3:

The average for student number 1 is: 95.0

Student number 2

Test number 1:
Test number 2:
Test number 3:

The average for student number 2 is: 81.0

Student number 3

Test number 1:
Test number 2:
Test number 3:

75 (Enter]
85 (Enter)
80 (Enter]

The average for student number 3 is: 80.0

47

Program 4-18 (rectangluar_pattern.py) 48

i

This program displays a rectangular pattern
of asterisks.

rows = int(input('How many rows? '))
cols = int(input('How many columns? '))

for r in range(rows):
for ¢ in range(cols):
print('*', end="")
print()

O 00~ O O & Wk

Program Output (with input shown in bold)

How many rows? 5 (Enter)
How many columns? 10 (Enter)

kEEEEEEE LR
kEEEEEEE LR
kEEEEEEE LR
kEEEEEEE LR

kEEEEEEE LR

Program 4-19 (triangle_pattern.py)

This program displays a triangle pattern.

1

2 BASE_SIZE = 8

3

4 for r in range(BASE_SIZE):
5 for ¢ in range(r + 1):
6 print('*", end="")
7 print()

Program Output

*

* k %

* k k &

* k% % k& %

* k k k k&
* %k k k k&

*k kk khk kK

Program 4-20 (stair_step_pattern.py)

This program displays a stair-step pattern.
NUM _STEPS = 6

1
p.
3
4 for r in range(NUM_STEPS):
5 for ¢ in range(r):

6 print(' ', end="")
/ print('#")

Program Output

Break statement

e The break statement is used to exit a loop prematurely
e |t can be used in both for loops and while loops

e When break is encountered, the loop is immediately
terminated

* Program execution continues with the next statement
after the loop

* break is useful for ending loops based on certain
conditions

Break examples

for 1 1n (1,) :
1f 1 ==
break

print (1)

count =
while
count +=
1f count ==
break

print (count)

Program Output:
1
2
3

Program Output:
1

2
3
4

Break examples: Input Validation

check Age must be >= 0
while
age = int(input('Enter age: "))
1f age >= 0:
break
print ('Invalid age')

print (f'Your age is {age}.')

Program Output:

Enter age: -1

Invalid age

Enter age: 18

Your age 1s 18.

Contilinue statement

e The continue command is used inside loops (for
and while)

e |t skips the rest of the current iteration and moves to
the next one/iteration

e Useful when you want to skip specific items in a loop
e Helps avoid nested conditional code
e Improves readability and efficiency of your code

Continue examples

count =
) while count <
for num 1n (3)
, count +=
1f num % 2 == |
1f count ==
continue .
continue
print (num) print (count)
Program Output: Program Output:
1 1
3 2
5 4
] 5

Summary

e This chapter covered:

e Repetition structures, including:

e Condition-controlled loops
e Count-controlled loops
e Nested loops

Infinite loops and how they can be avoided
* range function as used in for loops

Calculating a running total and augmented assighment
operators

Use of sentinels to terminate loops
break and continue to control loop

	Slide 1: CN101
	Slide 2: Topics
	Slide 3: Introduction to Repetition Structures
	Slide 4: The while Loop: a Condition-Controlled Loop
	Slide 5: The while Loop: a Condition-Controlled Loop (cont’d.)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Infinite Loops
	Slide 13: The for Loop: a Count-Controlled Loop
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Using the range Function with the for Loop
	Slide 19
	Slide 20
	Slide 21: Using the Target Variable Inside the Loop
	Slide 22
	Slide 23: Letting the User Control the Loop Iterations
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Generating an Iterable Sequence that Ranges from Highest to Lowest
	Slide 29: Calculating a Running Total
	Slide 30: Calculating a Running Total (cont’d.)
	Slide 31
	Slide 32
	Slide 33: The Augmented Assignment Operators
	Slide 34: The Augmented Assignment Operators (cont’d.)
	Slide 35: Sentinels
	Slide 36
	Slide 37
	Slide 38: Input Validation Loops
	Slide 39: Input Validation Loops (cont’d.)
	Slide 40: Input Validation Loops (cont’d.)
	Slide 41
	Slide 42
	Slide 43: Nested Loops
	Slide 44
	Slide 45: Nested Loops (cont’d.)
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Break statement
	Slide 52: Break examples
	Slide 53: Break examples: Input Validation
	Slide 54: Continue statement
	Slide 55: Continue examples
	Slide 56: Summary

