
CN101
Lecture 3

Decision Structures and Boolean Logic

Topics

• The if Statement

• The if-else Statement

• Comparing Strings

• Nested Decision Structures and the if-elif-else Statement

• Logical Operators

• Boolean Variables

2

Control structure

• Control structure: logical design that controls order in
which set of statements execute
• Sequence structure: set of statements that execute in the

order they appear

• Decision structure: specific action(s) performed only if a
condition exists
• Also known as selection structure

• Repetition structure: makes computer repeat included code
as necessary

3

The if Statement

• In flowchart, diamond represents true/false condition
that must be tested

• Actions can be conditionally executed
• Performed only when a condition is true

• Single alternative decision structure: provides only one
alternative path of execution
• If condition is not true, exit the structure

4

The if Statement (cont’d.)
5

Cold outside

Wear a coat.

True

False

The if Statement (cont’d.)

• Python syntax:

• First line known as the if clause
• Includes the keyword if followed by condition

• The condition can be true or false

• When the if statement executes, the condition is tested, and if it is
true the block statements are executed. otherwise, block statements
are skipped

6

if condition:
statement
statement
statement

Boolean Expressions and Relational
Operators
• Boolean expression: expression tested by if statement

to determine if it is true or false
• Example: a > b

• True if a is greater than b, False otherwise

• Relational operator: determines whether a specific
relationship exists between two values
• Example: greater than (>)

7

Boolean Expressions and Relational
Operators (cont’d.)
• >= and <= operators test more than one relationship

• It is enough for one of the relationships to exist for the
expression to be true

• == operator determines whether the two operands are
equal to one another
• Do not confuse with assignment operator (=)

• != operator determines whether the two operands are
not equal

8

Boolean Expressions and Relational
Operators (cont’d)

9

Expression Meaning

x > y Is x greater than y?

x < y Is x less than y?

x >= y Is x greater or equal to y?

x <= y Is x less than or equal to y?

x == y Is x equal to y?

x != y Is x not equal to y?

Example
10

1
2
3
4
5
6
7

>>> x = 1
>>> y = 0
>>> y < x
True
>>> x < y
False
>>>

1
2
3
4
5
6
7
8
9
10
11
12

>>> x = 1
>>> y = 0
>>> z = 1
>>> x >= y
True
>>> x >= z
True
>>> x <= z
True
>>> x <= y
False
>>>

Putting It All Together
11

if sales > 50000:
bonus = 500.0

sales > 50000

bonus = 500.0

True

False

Putting It All Together
12

if sales > 50000:
bonus = 500.0
commission_rate = 0.12
print('You met your sales quota!’)

sales > 50000

bonus = 500.0

True

False

commission_rate = 0.12

print(‘You met
your sales
quota!’)

Putting It All Together
13

if total >= 10000:
total = total * 0.9

print('Your total is', total)

total >= 10000

total = total * 0.9

True

False

print total

14
total_average.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

This program gets three test scores and displays
their average. It congratulates the user if the
average is a high score.

The high score variable holds the value that is
considered a high score.
HIGH_SCORE = 95

Get the three test scores.
test1 = int(input('Enter the score for test 1: '))
test2 = int(input('Enter the score for test 2: '))
test3 = int(input('Enter the score for test 3: '))

Calculate the average test score.
average = (test1 + test2 + test3) / 3

Print the average.
print('The average score is', average)

If the average is a high score,
congratulate the user.
if average >= HIGH_SCORE:

print('Congratulations!')
print('That is a great average!')

15

Program output (with input shown underlined)

Enter the score for test 1: 82
Enter the score for test 2: 76
Enter the score for test 3: 91
The average score is 83.0

Program output (with input shown underlined)

Enter the score for test 1: 93
Enter the score for test 2: 99
Enter the score for test 3: 96
The average score is 96.0
Congratulations!
That is a great average!

The if-else Statement

• Dual alternative decision structure: two possible paths
of execution
• One is taken if the condition is true, and the other if the

condition is false

• Syntax:

• if clause and else clause must be aligned

• Statements must be consistently indented

16

if condition:
statement
statement
etc.

else:
statement
statement
etc.

if condition:
statements

else:
other statements

The if-else Statement (cont’d)
17

temperature
< 40

TrueFalse

Print(“A little
cold, is’nt it?”

print(“Nice weather
we’re having.”

The if-else Statement (cont’d)
18

if condition:
statement
statement
etc.

else:
statement
statement
etc.

If the condition is True,

this block of statements

is executed.

Then, control jumps here,

to the statement following

the if-else statement.

if condition:
statement
statement
etc.

else:
statement
statement
etc.

If the condition is False,

this block of statements

is executed.

Then, control jumps here,

to the statement following

the if-else statement.

Align the if and

else clauses.

if temperature < 40:
print("A little cold, isn't it")
print("Turn up the heat!")

else:
print("Nice weather we're having.")
print("Pass the subscreen.")

The statements in each

block must be indented

consistently.

19
auto_repair_payroll.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Variables to represent the base hours and
the overtime multiplier.
BASE_HOURS = 40 # Base hours per week
OT_MULTIPLIER = 1.5 # Overtime multiplier

Get the hours worked and the hourly pay rate.
hours = float(input('Enter the number of hours worked: '))
pay_rate = float(input('Enter the hourly pay rate: '))

Calculate and display the gross pay.
if hours > BASE_HOURS:

Calculate the gross pay with overtime.
First, get the number of overtime hours worked.
overtime_hours = hours - BASE_HOURS

Calculate the amount of overtime pay.
overtime_pay = overtime_hours * pay_rate * OT_MULTIPLIER

Calculate the gross pay.
gross_pay = BASE_HOURS * pay_rate + overtime_pay

else:
Calculate the gross pay without overtime.
gross_pay = hours * pay_rate

Display the gross pay.
print(f'The gross pay is ${gross_pay:,.2f}')

20

Program output (with input shown underlined)

Enter the number of hours worked: 40
Enter the hourly pay rate: 20
The gross pay is $800.00.

Program output (with input shown underlined)

Enter the number of hours worked: 50
Enter the hourly pay rate: 20
The gross pay is $1,100.00.

Exercise: Create Statement

Write an if statement that assigns 20 to the variable y,
and assigns 40 to the variable z if the variable x is
greater than 100.

21

Exercise: Odd-Even Number

Write a program that reads in a positive integer n from
the user and then prints whether n is even or odd.

Hint: An even number is a multiple of 2. Any multiple of
2 leaves a remainder of zero when divided by 2.

An example run of the program is shown below.

22

>Enter a positive integer: 101
>101 is odd

Comparing Strings

• Strings can be compared using the == and != operators

• String comparisons are case sensitive

• Strings can be compared using >, <, >=, and <=
• Compared character by character based on the ASCII values

for each character

• If shorter word is substring of longer word, longer word is
greater than shorter word

23

ASCII Chart
24

Comparing Strings (cont’d)
25

name1 = "Marry"
name2 = "Mark"
if name1 > name2:

print("Marry is greater than Mark")
else:

print("Marry is NOT greater than Mark")

77 97 114 121

77 97 114 107

M a r y

M a r k

26
password.py

1
2
3
4
5
6
7
8
9
10

This program compares two strings.
Get a password from the user.
password = input('Enter the password: ')

Determine whether the correct password
was entered.
if password == 'prospero':

print('Password accepted.')
else:

print('Sorry, that is the wrong password.')

Program output (with input shown underlined)

Enter the password: ferdinand
Sorry, that is the wrong password.

Program output (with input shown underlined)

Enter the password: prospero
Password accepted.

27
sort_names.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14

This program compare strings with the < operator.
Get two names from the user.
name1 = input('Enter a name (last name first): ')
name2 = input('Enter another name (last name first): ')

Display the names in alphabetical order.
print('Here are the names, listed alphabetically.')

if name1 < name2:
print(name1)
print(name2)

else:
print(name2)
print(name1)

Program output (with input shown underlined)

Enter a name (last name first): Jones, Richard
Enter another name (last name first) Costa, Joan
Here are the names, listed alphabetically:
Costa, Joan
Jones, Richard

Nested Decision Structures and the
if-elif-else Statement

• A decision structure can be nested inside another
decision structure
• Commonly needed in programs

• Example:
• Determine if someone qualifies for a loan, they must meet two

conditions:

• Must earn at least $30,000/year

• Must have been employed for at least two years

• Check first condition, and if it is true, check second condition

28

29

loan_qualifier.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

This program determines whether a bank customer
qualifies for a loan.

MIN_SALARY = 30000.0 # The minimum annual salary
MIN_YEARS = 2 # The minimum years on the job

Get the customer's annual salary.
salary = float(input('Enter your annual salary: '))

Get the number of years on the current job.
prompt = 'Enter the number of years employed: '
years_on_job = int(input(prompt))

Determine whether the customer qualifies.
if salary >= MIN_SALARY:

if years_on_job >= MIN_YEARS:
print('You qualify for the loan.')

else:
msg = 'You must have been employed '
msg += f'for at least {MIN_YEARS} '
msg += 'years to qualify.'
print(msg)

else:
msg = 'You must earn at least '
msg += f'{MIN_SALARY:,.2f} per year to qualify.'
print(msg)

30

Program output (with input shown underlined)

Enter your annual salary: 35000
Enter the number of years employed: 1
You must have been employed for at least 2 years to qualify.

Program output (with input shown underlined)

Enter your annual salary: 25000
Enter the number of years employed: 5
You must earn at least $30,000.00 per year to qualify.

Program output (with input shown underlined)

Enter your annual salary: 35000
Enter the number of years employed: 5
You qualify for the loan.

31

salary >= 30000
TrueFalse

print(“You must
earn at least

$30,000 per year
to qualify.”

years_on_job >= 2

print(“You must
have been on
your current
job for at

least two years
to qualify.”

print(“You
qualify for
the loan.”

TrueFalse

Nested Decision Structures and the
if-elif-else Statement (cont’d)

• Important to use proper indentation in a nested
decision structure
• Important for Python interpreter

• Makes code more readable for programmer

• Rules for writing nested if statements:
• else clause should align with matching if clause

• Statements in each block must be consistently indented

32

33

if salary >= MIN_SALARY:
if years_on_job >= MIN_YEARS:

print('You qualify for the loan.')
else:

msg = 'You must have been employed '
msg += f'for at least {MIN_YEARS} '
msg += 'years to qualify.'
print(msg)

else:
msg = 'You must earn at least '
msg += f'{MIN_SALARY:,.2f} per year to qualify.'
print(msg)

This if and

else go

together.
This if and

else go

together.

The if-elif-else Statement

• if-elif-else statement: special version of a decision
structure
• Makes logic of nested decision structures simpler to write

• Can include multiple elif statements

• Syntax:
if condition_1:

statement(s)
elif condition_2:

statement(s)
elif condition_3:

statement(s)
else:

statement(s)

Insert as many elif clauses

as necessary.

34

The if-elif-else Statement (cont’d)

• Alignment used with if-elif-else statement:
• if, elif, and else clauses are all aligned

• Conditionally executed blocks are consistently indented

• if-elif-else statement is never required, but
logic easier to follow
• Can be accomplished by nested if-else

• Code can become complex, and indentation can cause
problematic long lines

35

36

score
>= 90

print(‘Your
grade is A.’)

score
>= 80

TrueFalse

print(‘Your
grade is B.’)

score
>= 70

print(‘Your
grade is C.’)

score
>= 70

print(‘Your
grade is D.’)

print(‘Your
grade is F.’)

False

False

False

True

True

True

37

grader.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

This program gets a numeric test score from the
user and displays the corresponding letter grade.

Variables to represent the grade thresholds
A_SCORE = 90
B_SCORE = 80
C_SCORE = 70
D_SCORE = 60

Get a test score from the user.
score = int(input('Enter your test score: '))

Determine the grade.
if score >= A_SCORE:

print('Your grade is A.')
else:

if score >= B_SCORE:
print('Your grade is B.')

else:
if score >= C_SCORE:

print('Your grade is C.')
else:

if score >= D_SCORE:
print('Your grade is D.')

else:
print('Your grade is F.')

Program output (with input shown underlined)

Enter your test score: 78
Your grade is C.

Program output (with input shown underlined)

Enter your test score: 84
Your grade is B.

if score >= A_SCORE:
print("Your grade is A.")

elif score >= B_SCORE:
print("Your grade is B.")

elif score >= C_SCORE:
print("Your grade is C.")

elif score >= D_SCORE:
print("Your grade is D.")

else:
print("Your grade is F.")

Logical Operators

• Logical operators: operators that can be used to create
complex Boolean expressions
• and operator and or operator:

• binary operators, connect two Boolean expressions into a compound
Boolean expression

• not operator:
• unary operator, reverses the truth of its Boolean operand

38

The and Operator

• Takes two Boolean expressions as operands
• Creates compound Boolean expression that is true only when

both sub expressions are true

• Can be used to simplify nested decision structures

• Truth table for the and operator

39

Value of the Expression Expression

False and False False

False and True False

True and False False

True and True True

The or Operator

• Takes two Boolean expressions as operands
• Creates compound Boolean expression that is true when

either of the sub expressions is true

• Can be used to simplify nested decision structures

• Truth table for the or operator

40

Value of the Expression Expression

False or False False

False or True True

True or False True

True or True True

Short-Circuit Evaluation

• Short circuit evaluation: deciding the value of a
compound Boolean expression after evaluating only
one sub expression
• Performed by the or and and operators

• For or operator: If left operand is true, compound
expression is true. Otherwise, evaluate right operand

• For and operator: If left operand is false, compound
expression is false. Otherwise, evaluate right operand

41

The not Operator

• Takes one Boolean expressions as operand and reverses
its logical value
• Sometimes it may be necessary to place parentheses around

an expression to clarify to what you are applying the not
operator

• Truth table for the not operator

42

Value of the Expression Expression

not True False

not False True

Checking Numeric Ranges with
Logical Operators

• To determine whether a numeric value is within a specific
range of values, use and
• Example: x >= 10 and x <= 20

• Can also be written as: 10 <= x <= 20

43

if x >= 10 and x <= 20:
print('The value is in the acceptable range.')

Checking Numeric Ranges with
Logical Operators (cont’d)

• To determine whether a numeric value is outside of a
specific range of values, use or
• Example: x < 10 or x > 20

44

if x < 10 or x > 20:
print('The value is outside the acceptable range.')

45

loan_qualifier2.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

This program determines whether a bank customer
qualifies for a loan.

MIN_SALARY = 30000.0 # The minimum annual salary
MIN_YEARS = 2 # The minimum years on the job

Get the customer's annual salary.
salary = float(input('Enter your annual salary: '))

Get the number of years on the current job.
prompt = 'Enter the number of years employed: '
years_on_job = int(input(prompt))

Determine whether the customer qualifies.
if salary >= MIN_SALARY and years_on_job >= MIN_YEARS:

print('You qualify for the loan.')
else:

print('You do not qualify for this loan.')

46

Program output (with input shown underlined)

Enter your annual salary: 35000
Enter the number of years employed: 1
You do not qualify for this loan.

Program output (with input shown underlined)

Enter your annual salary: 25000
Enter the number of years employed: 5
You do not qualify for this loan.

Program output (with input shown underlined)

Enter your annual salary: 35000
Enter the number of years employed: 5
You qualify for the loan.

Boolean Variables

• Boolean variable: references one of two values, True or
False
• Represented by bool data type

• Commonly used as flags
• Flag: variable that signals when some condition exists in a

program
• Flag set to False → condition does not exist

• Flag set to True → condition exists

47

• For example, the following code determines whether
the quota of 50,000 of a salesperson has been met:

Boolean Variables (cont’d)
48

if sales >= 50000.0:
sale_quota_met = True

else:
sale_quota_met = False

Boolean Variables (cont’d)

• The bool variable sale_quota_met can be used as a
flag to indicate whether the sales quota has been met.
We can test the flag in the following way:

or

49

if sale_quota_met == True:
print("You have met your sales quota!")

if sale_quota_met:
print("You have met your sales quota!")

50

Exercise: Maximum Number

Write a program that asks the user to enter 3 integers.
The program should display the maximum number.

51

>Enter integer #1: 10
>Enter integer #2: 35
>Enter integer #3: 9
>The maximum number is 35

Example run:

Exercise: Retail Discount
52

A software company sells a package that retails for 99 baht.
Quantity discounts are given according to the following table:

Write a program that asks the user to enter the number of
packages purchased. The program should then display the
amount of the discount (if any) and the total amount of the
purchase after the discount.

Quantity Discount

10 - 19 10%

20 - 49 20%

50 - 99 30%

100 or more 40%

Exercise: Retail Discount (cont’d)
Example run:

53

>Number of packages purchased: 5
>Normal amount: 495.00 Baht
>Discount amount: 0.00 Baht
>Total amount: 495.00 Baht

>Number of packages purchased: 25
>Normal amount: 2,475.00 Baht
>Discount amount: 495.00 Baht
>Total amount: 1,980.00 Baht

>Number of packages purchased: 200
>Normal amount: 19,800.00 Baht
>Discount amount: 7,920.00 Baht
>Total amount: 11,880.00 Baht

Exercise: Electricity
Normal monthly rate for electricity usage exceeding 150 units per
month (excluding VAT):

Write a program to calculate the electricity bill by specifying that the
user enters the electricity usage data as an integer. The program will
output the data as the electricity bill, service charge, VAT (7% of the
total electricity bill (electricity bill plus service charge)) and the total
amount to be paid, with 2 decimal places.

54

Electricity usage (kilowatt hours) Unit rate (baht)

Not more than 150 units (1 - 150) 3.2484

Next 250 units (151 – 400) 4.2218

More than 400 units (401 onwards) 4.4217

Service fee (baht/month): 24.62

Exercise: Electricity (cont’d)
Example run:

55

>Enter the energy consumption (kilowatt-hours): 0
>Electricity cost = 0.00 Baht
>Service charge = 24.62 Baht
>VAT (7 percent) = 1.72 Baht
>Total cost = 26.34 Baht

>Enter the energy consumption (kilowatt-hours): 100
>Electricity cost = 324.84 Baht
>Service charge = 24.62 Baht
>VAT (7 percent) = 24.46 Baht
>Total cost = 373.92 Baht

>Enter the energy consumption (kilowatt-hours): 300
>Electricity cost = 1,120.53 Baht
>Service charge = 24.62 Baht
>VAT (7 percent) = 80.16 Baht
>Total cost = 1,225.31 Baht

Summary

• This chapter covered:
• Decision structures, including:

• Single alternative decision structures

• Dual alternative decision structures

• Nested decision structures

• Relational operators and logical operators as used in creating
Boolean expressions

• String comparison as used in creating Boolean expressions

• Boolean variables

56

	Slide 1: CN101
	Slide 2: Topics
	Slide 3: Control structure
	Slide 4: The if Statement
	Slide 5: The if Statement (cont’d.)
	Slide 6: The if Statement (cont’d.)
	Slide 7: Boolean Expressions and Relational Operators
	Slide 8: Boolean Expressions and Relational Operators (cont’d.)
	Slide 9: Boolean Expressions and Relational Operators (cont’d)
	Slide 10: Example
	Slide 11: Putting It All Together
	Slide 12: Putting It All Together
	Slide 13: Putting It All Together
	Slide 14
	Slide 15
	Slide 16: The if-else Statement
	Slide 17: The if-else Statement (cont’d)
	Slide 18: The if-else Statement (cont’d)
	Slide 19
	Slide 20
	Slide 21: Exercise: Create Statement
	Slide 22: Exercise: Odd-Even Number
	Slide 23: Comparing Strings
	Slide 24: ASCII Chart
	Slide 25: Comparing Strings (cont’d)
	Slide 26
	Slide 27
	Slide 28: Nested Decision Structures and the if-elif-else Statement
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Nested Decision Structures and the if-elif-else Statement (cont’d)
	Slide 33
	Slide 34: The if-elif-else Statement
	Slide 35: The if-elif-else Statement (cont’d)
	Slide 36
	Slide 37
	Slide 38: Logical Operators
	Slide 39: The and Operator
	Slide 40: The or Operator
	Slide 41: Short-Circuit Evaluation
	Slide 42: The not Operator
	Slide 43: Checking Numeric Ranges with Logical Operators
	Slide 44: Checking Numeric Ranges with Logical Operators (cont’d)
	Slide 45
	Slide 46
	Slide 47: Boolean Variables
	Slide 48: Boolean Variables (cont’d)
	Slide 49: Boolean Variables (cont’d)
	Slide 50
	Slide 51: Exercise: Maximum Number
	Slide 52: Exercise: Retail Discount
	Slide 53: Exercise: Retail Discount (cont’d)
	Slide 54: Exercise: Electricity
	Slide 55: Exercise: Electricity (cont’d)
	Slide 56: Summary

