
CN101
Lecture 2

Input, Processing, and Output



Topics

• Designing a Program
• Input, Processing, and Output
• Displaying Output with print Function
• Comments 
• Variables
• Reading Input from the Keyboard
• Performing Calculations
• More About Data Output
• Named Constants

2



Designing a Program

• Programs must be designed before they are written
• Program development cycle:

• Design the program
• Write the code
• Correct syntax errors
• Test the program
• Correct logic errors

3



Designing a Program (cont’d.)

• Design is the most important part of the program 
development cycle
• Understand the task that the program is to perform

• Work with customer to get a sense what the program is 
supposed to do

• Ask questions about program details
• Create one or more software requirements

4



Designing a Program (cont’d.)

• Determine the steps that must be taken to perform the 
task

• Break down required task into a series of steps
• Create an algorithm, listing logical steps that must be taken

• Algorithm: set of well-defined logical steps that must be 
taken to perform a task

5



Pseudocode

• Pseudocode: fake code
• Informal language that has no syntax rule 
• Not meant to be compiled or executed
• Used to create model program

• No need to worry about syntax errors, can focus on program’s design
• Can be translated directly into actual code in any programming 

language

6



Pseudocode (cont’d.)

• For example, suppose you have been asked to write a 
program to calculate and display the gross pay for an 
hourly paid employee. 
• Here are the steps that you would take:

1. Input the hours worked
2. Input the hourly pay rate
3. Calculate gross pay as hours worked multiplied by pay rate
4. Display the gross pay

7



Flowcharts

• Flowchart: diagram that graphically depicts the steps in 
a program

• Ovals are terminal symbols
• Parallelograms are input and output symbols
• Rectangles are processing symbols
• Symbols are connected by arrows that represent the flow of 

the program

8



9



Input, Processing, and Output

• Typically, computer performs three-step process
• Receive input

• Input: any data that the program receives while it is running
• Perform some process on the input

• Example: mathematical calculation
• Produce output

10



Codes and Characters

• Each character is coded as a byte
• Most common coding system is ASCII (Pronounced 

as-key)
• ASCII = American National Standard Code for 

Information Interchange

11



ASCII Features

• 7-bit code
• 8th bit is unused (or used for a parity bit)
• 27 = 128 codes
• Two general types of codes: 

• 95 are “Graphic” codes (displayable on a console)
• 33 are “Control” codes (control features of the console or 

communications channel)

12



13
Standard ASCII code (in decimal)



Standard ASCII code (in decimal) 14
95 Graphic codes



Standard ASCII code (in decimal) 15
33 Control codes



Displaying Output with the print
Function
• Function: piece of prewritten code that performs an 

operation
• print function: displays output on the screen
• Argument: data given to a function

• Example: data that is printed to screen

• Statements in a program execute in the order that they 
appear

• From top to bottom

16



Displaying Output with the print
Function (cont’d)
• In interactive mode

• Script mode

17



Strings and String Literals

• String: sequence of characters that is used as data
• String literal: string that appears in actual code of a 

program
• Must be enclosed in single (') or double (") quote marks

18



Strings and String Literals (cont’d)

• If you want a string literal to contain either a single-quote or 
an apostrophe as part of the string, you can enclose the string 
literal in double-quote marks

19



Strings and String Literals (cont’d)

• Similarly if you want a string literal to contain a double-quote, 
you can enclose the string literal in single-quote marks

20



Strings and String Literals (cont’d)

• String literal can be enclosed in triple quotes (''' or """)
• Enclosed string can contain both single and double quotes and can 

have multiple lines
• Here is an example:

21



Comments

• Comments: notes of explanation within a program
• Ignored by Python interpreter

• Intended for a person reading the program’s code
• Begin with a # character

• End-line comment: appears at the end of a line of code
• Typically explains the purpose of that line

22



Comments (cont’d)
23



Comments (cont’d)
24



Variables

• Variable: name that represents a value stored in the 
computer memory

• Used to access and manipulate data stored in memory
• A variable references the value it represents

• Assignment statement: used to create a variable and 
make it reference data

• General format is variable = expression
• Example: age = 25
• Assignment operator: the equal sign (=)

25



Variables (cont’d.)

• In assignment statement, variable receiving value must 
be on left side

• A variable can be passed as an argument to a function
• Variable name should not be enclosed in quote marks

• You can only use a variable if a value is assigned to it

26



Example
27



Example
28



Variable Naming Rules

• Rules for naming variables in Python:
• Variable name cannot be a Python key word 
• Variable name cannot contain spaces
• First character must be a letter or an underscore
• After first character may use letters, digits, or underscores
• Variable names are case sensitive

• Variable name should reflect its use

29



Displaying Multiple Items with the 
print Function
• Python allows one to display multiple items with a 

single call to print
• Items are separated by commas when passed as arguments
• Arguments displayed in the order they are passed to the 

function
• Items are automatically separated by a space when displayed 

on screen

30



Variable Reassignment

• Variables can reference different values while program 
is running
• Garbage collection: removal of values that are no longer 

referenced by variables
• Carried out by Python interpreter

• A variable can refer to item of any type
• Variable that has been assigned to one type can be 

reassigned to another type

31



Example
32



Numeric Data Types, Literals, and 
the str Data Type
• Data types: categorize value in memory

• e.g., int for integer, float for real number, str used for 
storing strings in memory

• Numeric literal: number written in a program
• No decimal point considered int, otherwise, considered float

• Some operations behave differently depending on data 
type

33



Storing Strings with the str Data 
Type

34



Reassigning a Variable to a Different 
Type
• A variable in Python can refer to items of any type

35



Reading Input from the Keyboard

• Most programs need to read input from the user
• Built-in input function reads input from keyboard

• Returns the data as a string
• Format: variable = input(prompt)

• prompt is typically a string instructing user to enter a value
• Does not automatically display a space after the prompt

36



Example
37



Reading Numbers with the input
Function
• input function always returns a string
• Built-in functions convert between data types

• int(item) converts item to an int
• float(item) converts item to a float
• Nested function call: general format: 
function1(function2(argument))
• value returned by function2 is passed to function1

• Type conversion only works if item is valid numeric value, 
otherwise, throws exception

38



39

Ente
r



Performing Calculations
• Math expression: performs calculation and gives a 

value
• Math operator: tool for performing calculation
• Operands: values surrounding operator

• Variables can be used as operands
• Resulting value typically assigned to variable

40



Performing Calculations (cont’d)
41



Performing Calculations (cont’d)
• Two types of division:

• / operator performs floating point division
• // operator performs integer division

• Positive results truncated, negative rounded away from zero

42



43



Operator  Precedence and Grouping 
with Parentheses
• Python operator precedence:

1. Operations enclosed in parentheses
• Forces operations to be performed before others

2. Exponentiation (**)
3. Multiplication (*), division (/ and //), and remainder (%)
4. Addition (+) and subtraction (-)

• Higher precedence performed first
• Same precedence operators execute from left to right

44



Example
45



The Exponent Operator and the 
Remainder Operator
• Exponent operator (**): Raises a number to a power

• x ** y = xy

• Remainder operator (%): Performs division and returns 
the remainder

• a.k.a. modulus operator
• e.g., 4%2=0, 5%2=1
• Typically used to convert times and distances, and to detect 

odd or even numbers

46



47



Converting Math Formulas to 
Programming Statements
• Operator required for any mathematical operation 
• When converting mathematical expression to 

programming statement:
• May need to add multiplication operators
• May need to insert parentheses 

48



Mixed-Type Expressions and Data 
Type Conversion
• Data type resulting from math operation depends on 

data types of operands
• Two int values: result is an int
• Two float values: result is a float
• int and float: int temporarily converted to float, 

result of the operation is a float
• Mixed-type expression

• Type conversion of float to int causes truncation of 
fractional part

49



Breaking Long Statements into 
Multiple Lines
• Long statements cannot be viewed on screen without 

scrolling and cannot be printed without cutting off
• Multiline continuation character (\): Allows to break a 

statement into multiple lines

result = var1 * 2 + var2 * 3 + \
var3 * 4 + var4 * 5

50



Breaking Long Statements into 
Multiple Lines
• Any part of a statement that is enclosed in parentheses 

can be broken without the line continuation character.

print("Monday's sales are", monday,
"and Tuesday's sales are", tuesday,
"and Wednesday's sales are", Wednesday)

total = (value1 + value2 +
value3 + value4 +
value5 + value6)

51



More About Data Output

• print function displays line of output 
• Newline character at end of printed data
• Special argument end='delimiter' causes print to 

place delimiter at end of data instead of newline 
character

• print function uses space as item separator
• Special argument sep='delimiter' causes print to use 
delimiter as item separator

52



More About Data Output (cont’d.)

• Special characters appearing in string literal 
• Preceded by backslash (\)

• Examples: newline (\n), horizontal tab (\t)
• Treated as commands embedded in string

53



More About Data Output (cont’d.)

• When + operator used on two strings in performs string 
concatenation

• Useful for breaking up a long string literal

54



Magic Numbers

• A magic number is an unexplained numeric value that 
appears in a program’s code. Example:

amount = balance * 0.069

• What is the value 0.069? An interest rate? A fee 
percentage? Only the person who wrote the code 
knows for sure.

55



The Problem with Magic Numbers

• It can be difficult to determine the purpose of the 
number.

• If the magic number is used in multiple places in the 
program, it can take a lot of effort to change the 
number in each location, should the need arise.

• You take the risk of making a mistake each time you 
type the magic number in the program’s code. 

• For example, suppose you intend to type 0.069, but you 
accidentally type .0069. This mistake will cause mathematical 
errors that can be difficult to find.

56



Named Constants

• You should use named constants instead of magic numbers.
• A named constant is a name that represents a value that does 

not change during the program's execution.
• Example:

INTEREST_RATE = 0.069

• This creates a named constant named INTEREST_RATE, 
assigned the value 0.069. It can be used instead of the magic 
number:

amount = balance * INTEREST_RATE

57



Advantages of Using Named 
Constants
• Named constants make code self-explanatory (self-documenting)

• Named constants make code easier to maintain (change the 
value assigned to the constant, and the new value takes effect 
everywhere the constant is used)

• Named constants help prevent typographical errors that are 
common when using magic numbers

58



Python 3's f-Strings

• Also called “formatted string literals,” f-strings are 
string literals that have an f at the beginning and curly 
braces containing expressions that will be replaced with 
their values.
• Syntax: f"string {expression:format}“
• Format: .mf, where m = the number of decimal place  
• Ex: .2f = two decimal places

• Other formatting options: % and .format()

59



f-Strings
60

Program s-1

name = "Eric"

age = 74

Print(f"Hello, {name}. You are {age}.")

Hello, Erice. You are 74.
Program Output



f-Strings (cont’d)
61

Program s-2
first_name = "Eric"
last_name = "Idle"
age = 74
profession = "comedian"
affiliation = "Monty Python"
print(f"Hello, {first_name} {last_name}. You are {age}. " + 

f"You are a {profession}. " + 
f"You were a member of {affiliation}.")

Program Output

Hello, Eric Idle. You are 74. You are a comedian. You 
were a member of Monty Python.



f-Strings (cont’d)
62

Program Output

Program s-3

Eric is funny.

name = "eric"
sentence = f'{name.title()} is funny.'
print(sentence)



f-Strings (cont’d)
63

Program Output

Program s-4

x = 3.14159265
print(f'PI = {x:.2f}')

PI = 3.14



f-Strings (cont’d)
64

Program Output

Program s-5

x = 12345.6789
print(f'x = {x:,.2f}')

x = 12,345.68



f-Strings (cont’d)
65

Program OutputProgram s-6

s1 = 'ab'

s2 = 'abc'

s3 = 'abcd'

s4 = 'abcde'

print(f'01234567890')

print(f'{s1:10}')

print(f'{s2:<10}')

print(f'{s3:^10}')
print(f'{s4:>10}')

0123456789
ab        
abc

abcd
abcde



f-Strings (cont’d)
66

Program Output

Program s-7

Five plus ten is 15 and not 30.

a = 5
b = 10
print(f'Five plus ten is {a + b} and not {2 * (a + b)}.')



Summary

• This chapter covered:
• The program development cycle, tools for program design, 

and the design process
• Ways in which programs can receive input, particularly from 

the keyboard 
• print function to display output
• f-string to format output
• Use of comments in programs
• Uses of variables and named constants
• Tools for performing calculations in programs

67


