CN101

Lecture 2
Input, Processing, and Output

Topics

Designing a Program

Input, Processing, and Output

Displaying Output with print Function

Comments

Variables

Reading Input from the Keyboard

Performing Calculations
More About Data Output

Named Constants

Designing a Program

* Programs must be designed before they are written

* Program development cycle:
* Design the program
* Write the code
* Correct syntax errors
* Test the program
* Correct logic errors

Design the Write the Correct
program code syntax errors

f

Test the
program

Correct
logic errors

Designing a Program (cont’d.)

* Design is the most important part of the program
development cycle

* Understand the task that the program is to perform

 Work with customer to get a sense what the program is
supposed to do

* Ask questions about program details
* Create one or more software requirements

Designing a Program (cont’d.)

* Determine the steps that must be taken to perform the
task
* Break down required task into a series of steps
* Create an algorithm, listing logical steps that must be taken

e Algorithm: set of well-defined logical steps that must be
taken to perform a task

Pseudocode

* Pseudocode: fake code
* Informal language that has no syntax rule
* Not meant to be compiled or executed

* Used to create model program
* No need to worry about syntax errors, can focus on program’s design

* Can be translated directly into actual code in any programming
language

Pseudocode (cont’d.)

* For example, suppose you have been asked to write a
program to calculate and display the gross pay for an
hourly paid employee.

* Here are the steps that you would take:

1. Input the hours worked

2. Input the hourly pay rate

3. Calculate gross pay as hours worked multiplied by pay rate
4

Display the gross pay

Flowcharts

* Flowchart: diagram that graphically depicts the steps in
a program
* Ovals are terminal symbols
e Parallelograms are input and output symbols
* Rectangles are processing symbols

* Symbols are connected by arrows that represent the flow of
the program

Input the hours worked

J,

Input the hourly pay rate

'

Calculate gross pay as
hours worked multiplied
by pay rate

'

Display the gross pay

!
=)

Input, Processing, and Output

* Typically, computer performs three-step process
* Receive input
* Input: any data that the program receives while it is running

* Perform some process on the input
* Example: mathematical calculation

* Produce output

Input

Hours worked

Hourly pay rate

-
-

Process

Multiply hours worked
by hourly pay rate

Output

* Gross pay

Codes and Characters

* Each character is coded as a byte

* Most common coding system is ASCIl (Pronounced
as-key)

e ASCIl = American National Standard Code for
Information Interchange

ASCII| Features

e 7-bit code
e 8th bit is unused (or used for a parity bit)
e 27 =128 codes

* Two general types of codes:

* 95 are “Graphic” codes (displayable on a console)

e 33 are “Control” codes (control features of the console or
communications channel)

Standard ASCII code (in decimal)

13

Char

Dec | Char | Dec | Char | Dec | Char | Dec | Char | Dec | Char | Dec Dec | Char | Dec | Char
0 NUL 16 DLE %% SP 48 0 64 @ 80 P 96 : 112 p
1 SOH 17 | DC1 | 33 ! 49 1 65 A 81 Q 97 a 115 q
2 STX 18 DC2 34 e 50 2 66 B 82 R 98 b 114 r
3 ETX | 19 | DC3 | 35 # 5 3 67 C 83 S 99 C 115 S
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 51 % 53 5 69 E 85 U 101 e 117 u
6 ACK | 22 | SYN | 38 & 54 6 70 F 86 '} 102 f 118 Y
s BEL 23 ETB 39 : 55 7 71 G 87 W 103 g 119 w
8 BS 24 | CAN | 40 (56 8 i H 88 X 104 h 120 |, x
9 HT 25 EM 41) B 9 fi I 89 Y 105 i 121 | "y
10 LF 26 SuB 42 *® 58 74 J 90 VA 106 j 122 z
(| VT 2% ESC 43 + 59 - 5 K 91 [107 k 123 {
12 FF 28 FS 44 ; 60 < 76 L 92 \ 108 1 124 |
13 CR 29 GS 45 - 61 = 17 M 93] 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 & 110 n 126 ~
15 SI 31 us a7 / 63 ? 79 0 95 _ e (o] 127 | DEL

SP means space.

Standard ASCII code (in decimal)
95 Graphic codes

14

Dec | Char | Dec | Char | Dec | Char | Dec | Char | Dec | Char | Dec | Char | Dec | Char | Dec | Char
0 NUL 16 DLE %% SP 48 0 64 @ 80 P 96 : 112 p
1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q
2 STX 18 DC2 34 e 50 2 66 B 82 R 98 b 114 r
3 ETX | 19 | DC3 | 35 # 5 3 67 C 83 S 99 C 115 S
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 51 % 53 5 69 E 85 U 101 e 117 u
6 ACK | 22 | SYN | 38 & 54 6 70 F 86 '} 102 f 118 v
s BEL 23 ETB 39 : 55 7 71 G 87 W 103 g 119 w
8 BS 24 | CAN | 40 (56 8 i H 88 X 104 h 120 |, x
9 HT 25 EM 41) B 9 fi I 89 Y 105 i 121 | "y
10 LF 26 SuB 42 *® 58 74 J 90 VA 106 j 122 z
1l VT 2% ESC 43 + 59 - 5 K 91 [107 k 123 {
1% FF 28 FS 44 ; 60 < 76 L 92 \ 108 1 124 |
13 CR 29 GS 45 - 61 = 17 M 93 1 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 i 110 n 126 ~
15 SI 31 us a7 / 63 ? 79 0 95 _ e (o] 127 | DEL

SP means space.

33 Control codes

Standard ASCII code (in decimal)

15

Char

Dec | Char | Dec | Char) Dec | Char | Dec | Char | Dec | Char | Dec Dec | Char | Dec | Char
0 NUL 16 DLE %% SP 48 0 64 @ 80 P 96 : 112 p
1 SOH 17 DC1 353 ! 49 1 65 A 81 Q 97 a 113 q
2 STX 18 DC2 34 e 50 2 66 B 82 R 98 b 114 r
3 ETX | 19 | DC3 | 35 # 5 3 67 C 83 S 99 C 115 S
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 51 % 53 5 69 E 85 U 101 e 117 u
6 ACK | 22 | SYN | 38 & 54 6 70 F 86 '} 102 f 118 Y
s BEL 23 ETB 39 : 55 7 71 G 87 W 103 g 119 w
8 BS 24 | CAN | 40 (56 8 i H 88 X 104 h 120 |, x
9 HT 25 EM 41) B 9 fi I 89 Y 105 i 121 | "y
10 LF 26 SuB 42 *® 58 74 J 90 VA 106 j 122 z
1l VT 2% ESC 43 + 59 - 5 K 91 [107 k 123 {
12 FF 28 FS 44 ; 60 < 76 L 92 \ 108 1 124 |
13 CR 29 GS 45 - 61 = 17 M 93 1 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 i 110 n 126 ~
15 SI 31 us) a7 / 63 ? 79 0 95 _ e (o] 127 | DEL

SP means space.

Displaying Output with the print
Function

* Function: piece of prewritten code that performs an
operation

* print function: displays output on the screen

* Argument: data given to a function
* Example: data that is printed to screen

e Statements in a program execute in the order that they

appear
* From top to bottom

Displaying Output with the print
Function (cont’d)

* |n interactive mode

>>> print('Hello world"')(Enter)

Hello world
>>2

o Script mode Program 2-1 (output.py)
1 print('Kate Austen')
2 print('123 Full Circle Drive')
3 print('Asheville, NC 28899")

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

Strings and String Literals

e String: sequence of characters that is used as data

e String literal: string that appears in actual code of a

program

* Must be enclosed in single (') or double (") quote marks

Program 2-1 (output.py)

1 print('Kate Austen')
2 print('123 Full Circle Drive')
3 print('Asheville, NC 28899"')

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

Program 2-2 (double_quotes.py)

1 print("Kate Austen")
2 print("123 Full Circle Drive")
3 print("Asheville, NC 28899")

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

Strings and String Literals (cont’d)

* If you want a string literal to contain either a single-quote or
an apostrophe as part of the string, you can enclose the string
literal in double-quote marks

Program 2-3 (apostrophe.py)

1 print("Don't fear!")
2 print("I'm here!")

Program Output

Don't fear!
I'm here!

20

Strings and String Literals (cont’d)

* Similarly if you want a string literal to contain a double-quote,
you can enclose the string literal in single-quote marks

Program 2-4 (display_quote.py)
1 print('Your assignment is to read "Hamlet" by tomorrow.')

Program Output
Your assignment is to read "Hamlet" by tomorrow.

21

Strings and String Literals (cont’d)

* String literal can be enclosed in triple quotes ("' or " " ")
* Enclosed string can contain both single and double quotes and can

have multiple lines
* Hereis an example:

>>> print("""One
Two

Three""")

One

Two

Three

>>> pr'int("""]:'m HJ_'meyH HHH)
I'm "Jimmy"

Comments

 Comments: notes of explanation within a program

* lgnored by Python interpreter
* Intended for a person reading the program’s code

* Begin with a # character

* End-line comment: appears at the end of a line of code
* Typically explains the purpose of that line

Comments (cont’d)

Program 2-5 (comment1.py)

1 # This program displays a person's
2 # name and address.

3 print('Kate Austen')

4 print('123 Full Circle Drive')

5 print('Asheville, NC 28899'")

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

23

Comments (cont’d)

Program 2-6 (comment2.py)

1 print('Kate Austen')
2 print('123 Full Circle Drive')
3 print('Asheville, NC 28899'")

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

Display the name.
Display the address.
Display the city, state, and ZIP.

24

Variables

* Variable: name that represents a value stored in the
computer memory
* Used to access and manipulate data stored in memory
* Avariable references the value it represents

e Assigcnment statement: used to create a variable and
make it reference data

* General formatis variable = expression
* Example: age = 25

* Assignment operator: the equal sign (=)

age > 25

26

Variables (cont’d.)

* In assignment statement, variable receiving value must
be on left side |>>> 25 = age

SyntaxError: can't assign to literal
>>>

* A variable can be passed as an argument to a function
e Variable name should not be enclosed in quote marks

* You can only use a variable if a value is assigned to it
>>> width = 10 >>> print(width)
>>> length = 5 10
>>> >>> print(length)

5
>2>2>

Example

Program 2-8 (variable_demo2.py)

O O N O, WN—

Create two variables: top_speed and distance.

27

top_speed = 160 top_speed
distance = 300

distance

160

300

Display the values referenced by the variables.
print('The top speed is')

print(top_speed)

print('The distance traveled is')

print(distance)

Program Output

The top speed is

160

The distance traveled is

300

Example

Program 2-7 (variable_demo.py)

This program demonstrates a variable.
room = 503

1
? —
3 print('I am staying in room number')
4 print(room)

Program Output

I am staying in room number
503

28

Variable Naming Rules

* Rules for naming variables in Python:

e Variable name cannot be a Python key word

* Variable name cannot contain spaces

 First character must be a letter or an underscore
After first character may use letters, digits, or underscores
* Variable names are case sensitive

e Variable name should reflect its use

Variable Name Legal or Illegal?

units_per_day Legal

dayOfWeek Legal

3dGraph Illegal. Variable names cannot begin with a digit.
June1997 Legal

Mixture#3 Illegal. Variable names may only use letters, digits, or underscores.

29

Displaying Multiple Items with the
print Function

* Python allows one to display multiple items with a
single callto print
* |tems are separated by commas when passed as arguments

* Arguments displayed in the order they are passed to the
function

* |tems are automatically separated by a space when displayed

ONSCTEEN program 2-9 (variable_demo3.py)

1 # This program demonstrates a variable.
2 room = 503
3 print('I am staying in room number', room)

Program Output
I am staying in room number 503

Variable Reassignment

 Variables can reference different values while program
IS running

* Garbage collection: removal of values that are no longer
referenced by variables
e Carried out by Python interpreter

* A variable can refer to item of any type

e Variable that has been assigned to one type can be
reassigned to another type

32

Example

Program 2-10 (variable_demo4.py)

1 # This program demonstrates variable reassignment.

2 # Assign a value to the dollars variable. |Thedoliars variable after line 3 executes.

3 dollars = 2.75 AoTlars -2 75
print('I have', dollars, 'in my account.')

The dollars variable after line 8 executes.

dollars — 2.75

Reassign dollars so it references
a different value.
dollars = 99.95

= (99.95

© O NO O B

print('But now I have', dollars, 'in my account!')

Program Output

I have 2.75 in my account.
But now I have 99.95 in my account!

Numeric Data Types, Literals, and
the str Data Type

e Data types: categorize value in memory

* e.g., int for integer, £loat for real number, str used for
storing strings in memory

 Numeric literal: number written in a program
* No decimal point considered int, otherwise, considered float

* Some operations behave differently depending on data
type

>>> type(1) >>> type(1.0)
<class 'int'> <class 'float'>
>>2 >>2

Storing Strings with the str Data
Type

Program 2-11 (string_variable.py)

Create variables to reference two strings.
first_name = 'Kathryn'
last name = 'Marino’

Display the values referenced by the variables.

1
2
3
4
5
6 print(first_name, last_name)

Program Output
Kathryn Marino

34

Reassignhing a Variable to a Different 3

Type

5

* A variable in Python can refer to items of any type

>>> x = 99
>>> print(x)
99

>>> x = 'Take me to your Tleader'

>>> print(x)
Take me to your leader.
- >

The variable X references an integer

X > 99

The variable x references a string

X — 99

——» Take me to your leader

Reading Input from the Keyboard

* Most programs need to read input from the user

* Built-in input function reads input from keyboard
e Returns the data as a string

* Format: variable = 1input (prompt)
* prompt istypically a string instructing user to enter a value
* Does not automatically display a space after the prompt

Example

Program 2-12 (string_input.py)

1
2
3
4
5
6
7
8

Get the user's first name.
first_name = input('Enter your first name: ')

Get the user's last name.
last_name = 1input('Enter your last name: ')

Print a greeting to the user.
print('Hello', first_name, last_name)

Program Output (with input shown in bold)

Enter your first name: Vinny
Enter your last name: Brown
Hello Vinny Brown

37

Reading Numbers with the input
Function

 input function always returns a string

* Built-in functions convert between data types
* Int (1tem) converts 1temtoan 1int
e float (item) converts 1itemtoa float

* Nested function call: general format:
functionl (functionZ (argument))
» value returned by function2 is passed to functionl
* Type conversion only works if item is valid numeric value,
otherwise, throws exception

Program 2-13 (input.py)

Get the user's name, age, and income.

name = input('What is your name? ')

age = int(input('What is your age? '))

income = float(input('What is your income? '))

print('Here is the data you entered:')
print('Name:', name)

print('Age:', age)
(

1
2
3
4
5
6 # Display the data.
-
8
9
O print('Income:', income)

1

Program Output (with input shown in bold)

What is your name? Chris (Enter)

What is your age? 25 (Enter]

What 1is your 1income? 75000.0[f2fi]
Here 1is the data you entered:
Name: Chris

Age: 25

Income: 75000.0

39

Performing Calculations

* Math expression: performs calculation and gives a
value
 Math operator: tool for performing calculation

* Operands: values surrounding operator
* Variables can be used as operands

* Resulting value typically assigned to variable

41

Performing Calculations (cont’d)

Symbol Operation

Description

+ Addition Adds two numbers

—~ Subtraction Subtracts one number from another

* Multiplication Multiplies one number by another

/ Division Divides one number by another and gives the result as
a floating-point number

/1 Integer division Divides one number by another and gives the result as
a whole number

% Remainder Divides one number by another and gives the remainder

*x Exponent Raises a number to a power

Performing Calculations (cont’d)

* Two types of division:

* / operator performs floating point division

« // operator performs integer division
* Positive results truncated, negative rounded away from zero

>>> 5 | 2 [Enter) | | >>> 5 [/ 2 (Enter] | | >>> -5 [/ 2 (Enter]
2.5 2 -3

>>2> >>2> >>2>

Program 2-14 (simple_math.py) -

Assign a value to the salary variable.
salary = 2500.0

1

2

G

4 # Assign a value to the bonus variable.
5 bonus = 1200.0
6

-

8

Calculate the total pay by adding salary
and bonus. Assign the result to pay.
9 pay = salary + bonus
10
11 # Display the pay.
12 print(‘Your pay is’, pay)

Program Output
Your pay is 3700.0

Operator Precedence and Grouping
with Parentheses

* Python operator precedence:

1. Operations enclosed in parentheses
Forces operations to be performed before others

2. Exponentiation (**)
3. Multiplication (*), division (/ and //), and remainder (%)
4. Addition (+) and subtraction (-)

* Higher precedence performed first
* Same precedence operators execute from left to right

outcome = 12.0 + 6.0 / 3.0

Example |

outcome = 12.0 + 2.0

| |
|

outcome = 14.0

Expression Value

5+2 * 4 &

10 / 2 - 3 2.0

8 +12 * 2 - 4 28

B~ 3% 2 57— i 6
Expression Value
(6 +2) * 4 28
10 / (5 - 3) 5.0
8 + 12 * (6 - 2) 56

(6 —3) * (2+7) /] 3 9.0

The Exponent Operator and the
Remainder Operator

* Exponent operator (* *): Raises a number to a power

* Remainder operator (%): Performs division and returns
the remainder
* a.k.a. modulus operator
°eg.,4%52=0, 5%2=1
* Typically used to convert times and distances, and to detect
odd or even numbers

Program 2-17 (time_converter.py)

Get a number of seconds from the user.
total_seconds = float(input('Enter a number of seconds: '))

1
s
3
4 # Get the number of hours.

5 hours = total _seconds // 3600
6

7

8

Get the number of remaining minutes.
minutes = (total_seconds // 60) % 60
9
10 # Get the number of remaining seconds.
11 seconds = total_seconds % 60
12
13 # Display the results.
14 print('Here is the time in hours, minutes, and seconds:')

15 print('Hours:', hours)
16 print('Minutes:', minutes)
17 print('Seconds:', seconds)

Program Output (with input shown in bold)

Enter a number of seconds: 11730

Here is the time in hours, minutes, and seconds:
Hours: 3.0

Minutes: 15.0

Seconds: 30.0

47

48

Converting Math Formulas to
Programming Statements

* Operator required for any mathematical operation

* When converting mathematical expression to
programming statement:
* May need to add multiplication operators
* May need to insert parentheses

Algebraic Expression Python Statement

y = % y =3 *x [/ 2

2= 3bc + 4 z=3*b *c+ 4
x + 2

a=b_1 a=(x+2)/ (b-1)

Mixed-Type Expressions and Data
Type Conversion

e Data type resulting from math operation depends on
data types of operands
* Two int values:resultisan int
* Two float values:resultisa float

e int and float: int temporarily converted to float,
result of the operationisa float
* Mixed-type expression
* Type conversion of f1oat to int causes truncation of
fractional part

Breaking Long Statements into
Multiple Lines

* Long statements cannot be viewed on screen without
scrolling and cannot be printed without cutting off

 Multiline continuation character (\): Allows to break a
statement into multiple lines

result = varl * 2 4+ var2 * 3 + \
var3 * 4 + var4d * 5

Breaking Long Statements into
Multiple Lines

* Any part of a statement that is enclosed in parentheses
can be broken without the line continuation character.

print ("Monday's sales are", monday,
"and Tuesday's sales are", tuesday,
"and Wednesday's sales are'", Wednesday)
total = (valuel + value? +

valuel + valued +
valueb + valueo®)

52

More About Data Output

e print function displays line of output

* Newline character at end of printed data

e Special argument end="'delimiter' causes print to
place delimiter at end of data instead of newline

character
e print function uses space as item separator

e Special argument sep="delimiter"' causes print to use
delimiter asitem separator

print('One', end=' ') ||>>> print('One’', 'Two', 'Three', sep="")
') OneTwoThree

print('Two’, end="'

print('Three’) >>> print('One', 'Two', 'Three', sep='*")

One*Two*Three

One Two Three

53

More About Data Output (cont’d.)

* Special characters appearing in string literal
* Preceded by backslash (\)

* Examples: newline (\n), horizontal tab (\ t)
* Treated as commands embedded in string

>>> print('One\nTwo\nThree")
One

Two

Three

Escape Character

Effect

\n
\t

Causes output to be advanced to the next line.

Causes output to skip over to the next horizontal tab position.
Causes a single quote mark to be printed.

Causes a double quote mark to be printed.

Causes a backslash character to be printed.

54

More About Data Output (cont’d.)

* When + operator used on two strings in performs string
concatenation

e Useful for breaking up a long string literal

>>> print('Enter the amount of ' +
'sales for each day and ' +
'press Enter.')
Enter the amount of sales for each day and press Enter.

Magic Numbers

* A magic number is an unexplained numeric value that
appears in a program’s code. Example:

amount = balance * 0.0069

* What is the value 0.0697? An interest rate? A fee
percentage? Only the person who wrote the code
knows for sure.

The Problem with Magic Numbers

* It can be difficult to determine the purpose of the
number.

* If the magic number is used in multiple places in the
program, it can take a lot of effort to change the
number in each location, should the need arise.

* You take the risk of making a mistake each time you
type the magic number in the program’s code.
* For example, suppose you intend to type 0.069, but you

accidentally type .0069. This mistake will cause mathematical
errors that can be difficult to find.

Named Constants

* You should use named constants instead of magic numbers.

* A named constant is a name that represents a value that does
not change during the program's execution.

* Example:

INTEREST RATE = 0.069

* This creates a named constant named INTEREST RATE,
assigned the value 0.069. It can be used instead of the magic
number:

amount = balance * INTEREST RATE

Advantages of Using Named
Constants

* Named constants make code self-explanatory (self-documenting)

 Named constants make code easier to maintain (change the
value assigned to the constant, and the new value takes effect
everywhere the constant is used)

* Named constants help prevent typographical errors that are
common when using magic numbers

Python 3's f-Strings

* Also called “formatted string literals,” f-strings are
string literals that have an £ at the beginning and curly
braces containing expressions that will be replaced with

their values.

* Syntax: £"string {expression:format}"
* Format: .mf, where m =the number of decimal place
* Ex: .2f =two decimal places

e Other formatting options: % and .format()

f-Strings

Program s-1

name = "Eric"
age = 74

Print (f"Hello, {name}. You are f{age}.")

Program Output

Hello, Erice. You are 74.

f-Strings (cont’d)

Program s-2

first name = "Eric"

last name = "Idle"

age = 74

profession = "comedian"

affiliation = "Monty Python"

print (f"Hello, {first name} {last name}. You are {age}. " +
f"You are a {profession}. " +
f"You were a member of {affiliation}.")

Program Output

Hello, Eric Idle. You are 74. You are a comedian. You
were a member of Monty Python.

f-Strings (cont’d)

Program s-3
name = "eric"
sentence = f'{name.title()} is funny.'

print (sentence)

Program Output

Eric i1s funny.

f-Strings (cont’d)

Program s-4

x = 3.14159265
print (£'PI = {x:.2f}")

Program Output

PI = 3.14

f-Strings (cont’d)

Program s-5

x = 12345.6789
print (f'x = {x:,.2f}")

Program Output

x = 12,345.068

f-Strings (cont’d)

Program s-6 Program Output
1 = ap 0123456789
s2 = 'abc' ab

— I I abc
s3 = 'abcd abcd
s4 = 'abcde' abcde

print (£'01234567890")
print (£'{sl1:10}")
print (£f'{s2:<10}")
print (£'{s3:710}")
print (£'{s4:>10}")

f-Strings (cont’d)

Program s-7
a = b5
b = 10

print (f'Five plus ten is {a + b} and not {2 * (a + b)}.")

Program Output

Five plus ten 1s 15 and not 30.

Summary

* This chapter covered:

* The program development cycle, tools for program design,
and the design process

* Ways in which programs can receive input, particularly from
the keyboard

print function to display output

f-string to format output

* Use of comments in programs

* Uses of variables and named constants

* Tools for performing calculations in programs

