CN101

Turtle Graphics

Introduction to Turtle Graphics

* Python's turtle graphics system displays a small cursor
known as a turtle.

Python Turtle Graphics — O X
=]
> [
A

* You can use Python statements to move the turtle
around the screen, drawing lines and shapes.

Introduction to Turtle Graphics

* To use the turtle graphics system, you must import the
turtle module with this statement:

import turtle

This loads the turtle module into memory

Moving the Turtle Forward

e Use the turtle.forward(n) statement to move the turtle
forward n pixels.

Python Turtle Graphics — O X
>>> import turtle =
>>> turtle.forward(100)
>>>

.
=~
< | B

Turning the Turtle

* The turtle's initial heading is O degrees (east)

* Usethe turtle.right (angle) statement to turn
the turtle right by angle degrees.

* Usethe turtle.left (angle) statement to turn
the turtle left by angle degrees.

Turning the Turtle

>>>
>>>
>>>
>>>
>>>

import
turtle
turtle
turtle

turtle
.forward (100)
.1eft (90)
.forward (100)

@ Python Turtle Graphics

Turning the Turtle

>>>
>>>
>>>
>>>
>>>

import

turtle.
turtle.
turtle.

turtle
forward (100)
right (45)
forward (100)

? Python Turtle Graphics

Setting the Turtle's Heading

* Usethe turtle.setheading (angle) statement
to set the turtle's heading to a specific angle.

Python Turtle Graphics = O X

>>> import turtle

>>> turtle.forward(50)

>>> turtle.setheading (90)
>>> turtle.forward (100)
>>> turtle.setheading (180)
>>> turtle.forward(50)

>>> turtle.setheading (270) —
>>> turtle.forward (100) 5]
>>> Kl | &

Setting the Pen Up or Down

* When the turtle's pen is down, the turtle draws a line as
it moves. By default, the pen is down.

* When the turtle's pen is up, the turtle does not draw as
It moves.

e Use the turtle.penup() statement to raise the pen.

e Use the turtle.pendown() statement to lower the pen.

Setting the Pen Up or Down

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import

turtle.

turtle

turtle

turtle

turtle
turtle

turtle
forward (50)

.penup ()
turtle.

forward (25)

.pendown ()
turtle.

forward (50)

.penup ()
turtle.

forward (25)

.pendown ()
.forward (50)

¢ Python Turtle Graphics

10

Drawing Circles

e Usethe turtle.circle (radius) statementto
draw a circle with a specified radius.

¢ Python Turtle Graphics - O X

>>> import turtle
>>> turtle.circle (100)
>>>

Drawing Dots

* Usethe turtle.dot () statement to draw a simple

dot at the turtle's current location.

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import

turtle.
turtle.
turtle.
turtle.
.dot ()
turtle.

turtle

turtle
dot ()
forward (50)
dot ()
forward (50)

forward (50)

¢ Python Turtle Graphics

12

Changing the Pen Size and Drawing
Color

e Use the turtle.pensize(width) statement to change the
width of the turtle's pen, in pixels.

* Use the turtle.pencolor(color) statement to change the
turtle's drawing color.
* See Appendix D in your textbook for a complete list of colors.

>>> import turtle

>>> turtle.pensize (5)

>>> turtle.pencolor ('red')
>>> turtle.circle (100)

>>>

Working with the Turtle's Window

 Usethe turtle.bgcolor (color) statement to set the

window's background color.
» See Appendix D in your textbook for a complete list of colors.

e Usethe turtle.setup (width, height) statement to set
the size of the turtle's window, in pixels.
* The widthand height arguments are the width and height, in pixels.

* For example, the following interactive session creates a graphics window
that is 640 pixels wide and 480 pixels high:

>>> import turtle
>>> turtle.setup (640, 480)
>>>

Resetting the Turtle's Window

e The turtle.reset () statement:
* Erases all drawings that currently appear in the graphics window.
* Resets the drawing color to black.
* Resets the turtle to its original position in the center of the screen.
* Does not reset the graphics window’s background color.

e The turtle.clear () statement:
* Erases all drawings that currently appear in the graphics window.
* Does not change the turtle's position.
* Does not change the drawing color.
* Does not change the graphics window’s background color.

* The turtle.clearscreen () statement:
* Erases all drawings that currently appear in the graphics window.
* Resets the drawing color to black.
* Resets the turtle to its original position in the center of the screen.
* Resets the graphics window’s background color to white.

Working with Coordinates

 The turtle uses Cartesian Coordinates

¢ Python Turtle Graphics

A

+ Y coordinates

0,0
- X coordinates + X coordinates

A
y

Moving the Turtle to a Specific
Location

* Usethe turtle.goto (x, y) statementto move
the turtle to a specific location.

Python Turtle Graphics = O X
[=]
>>> import turtle
>>> turtle.goto (0, 100)
>>> turtle.goto(-100, O0)
>>> turtle.goto (0, 0)
>>>
=~
Rl | B

* The turtle.pos () statement displays the turtle's current X,Y coordinates.
e The turtle.xcor () statement displays the turtle's current X coordinate and the
turtle.ycor () statement displays the turtle's current Y coordinate.

Animation Speed

* Usethe turtle.speed (speed) command to
change the speed at which the turtle moves.

* The speedargument is a number in the range of 0 through
10.

* If you specify O, then the turtle will make all of its moves
instantly (animation is disabled).

Hiding and Displaying the Turtle

e Usethe turtle.hideturtle () command to hide
the turtle.

* This command does not change the way graphics are drawn,
it simply hides the turtle icon.

e Usethe turtle.showturtle () command to
display the turtle.

Displaying Text

* Usethe turtle.write (text) statement to display
text in the turtle's graphics window.
* The text argument is a string that you want to display.

* The lower-left corner of the first character will be positioned
at the turtle’s X and Y coordinates.

Displaying Text

>>> import turtle

>>> turtle.write('Hello World')

>>>

? Python Turtle Graphics —

a

X

}H ellec World

=]

21

Filling Shapes

* To fill a shape with a color:

* Usethe turtle.begin f£ill () command before
drawing the shape B

* Thenusethe turtle.end fill () command after the
shape is drawn.

* Whenthe turtle.end fill () command executes, the
shape will be filled with the current fill color

Filling Shapes

>>2>
>>2>
>>2>
>>2>
>>2>
>>2>
>>2>

import

turtle.
turtle.
turtle.
turtle.
turtle.

turtle
hideturtle ()
fillcolor ('red')
begin fill()
circle (100)

end fill ()

ﬁ Python Turtle Graphics

23

Keeping the Graphics Window Open

* When running a turtle graphics program outside IDLE, the
graphics window closes immediately when the program is done.

* To prevent this, add the turtle.done () statement to the very
end of your turtle graphics programs.

* This will cause the graphics window to remain open, so you can see its
contents after the program finishes executing.

Turtle Graphics: Determining the
State of the Turtle

* The turtle.xcor () and turtle.ycor () functions return
the turtle's X and Y coordinates

* Examples of calling these functions in an i f statement:

if turtle.ycor() < O0:
turtle.goto (0, 0)

if turtle.xcor () > 100 and turtle.xcor () < 200:
turtle.goto (0, 0)

Turtle Graphics: Determining the
State of the Turtle

* The turtle.heading () function returns the turtle's heading.
(By default, the heading is returned in degrees.)

* Example of calling the function in an i f statement:

if turtle.heading() >= 90 and turtle.heading() <= 270:
turtle.setheading (180)

Turtle Graphics: Determining the
State of the Turtle

* The turtle.isdown () function returns True if the penis
down, or False otherwise.

* Example of calling the function in an i f statement:

if turtle.isdown () :
turtle.penup ()

if not (turtle.isdown()) :
turtle.pendown ()

Turtle Graphics: Determining the
State of the Turtle

e The turtle.isvisible () function returns True if the
turtle is visible, or Fal se otherwise.

* Example of calling the function in an i f statement:

if turtle.isvisible():
turtle.hideturtle ()

Turtle Graphics: Determining the
State of the Turtle

* Whenyou call turtle.pencolor () without passing an

argument, the function returns the pen's current color as a string.
Example of calling the function in an i f statement:

1if turtle.pencolor() == 'red':
turtle.pencolor ('blue')

* Whenyoucall turtle.fillcolor () without passing an
argument, the function returns the current fill color as a string.
Example of calling the function in an i f statement:

if turtle.fillcolor() == 'blue':
turtle.fillcolor ('white')

Turtle Graphics: Determining the
State of the Turtle

* Whenyou call turtle.bgcolor () without passing an

argument, the function returns the current background color as a
string. Example of calling the function in an i f statement:

if turtle.bgcolor() == 'white':
turtle.bgcolor ('gray')

Turtle Graphics: Determining the
State of the Turtle

* Whenyou call turtle.pensize () without passing an

argument, the function returns the pen's current size as a string.
Example of calling the function in an i f statement:

1if turtle.pensize() < 3:
turtle.pensize (3)

Turtle Graphics: Determining the
State of the Turtle

* Whenyou call turtle.speed () without passing an argument,

the function returns the current animation speed. Example of
calling the function in an i f statement:

if turtle.speed() > O0:
turtle.speed (0)

Turtle Graphics: Determining the
State of the Turtle

* See In the Spotlight: The Hit the Target Game in your textbook for
numerous examples of determining the state of the turtle.

| & Python 3.5.1 Shell N X 7
File Edit Shell Debug Options Window Help
Python 3.5.1 (v3.5.1:37a207cee5969, Dec 6 2015, 01:3
) I v.1900 32 bit (Ir)1 n32
cccccccccccccccccccccccccccccccc ()" for more
information.
——————————————— AR :\p ams\
Enter the projectile's angle: 45
(1-10)

You missed the target.
——————————————— AR \p ams\
Enter the projectile's angle: 67

¥ ¥ (1-10)
Target hit!

Turtle Graphics: Using Loops to Draw
Designs

e You can use loops with the turtle to draw both simple shapes and
elaborate designs. For example, the following for loop iterates
four times to draw a square that is 100 pixels wide:

for x in range(4):
turtle.forward (100)
turtle.right (90)

Turtle Graphics: Using Loops to Draw
Designs

e This for loop iterates eight times to draw the
octagon:

for x in range(8):
turtle.forward(100)
turtle.right (45)

Turtle Graphics: Using Loops to Draw
Designs

e You can create interesting designs by repeatedly drawing a
simple shape, with the turtle tilted at a slightly different angle
each time it draws the shape.

NUM CIRCLES = 36 # Number of circles to draw
RADIUS = 100 # Radius of each circle
ANGLE = 10 # Angle to turn
for x in range (NUM CIRCLES) : mﬁo":ﬁ\
: o A A N
turtle.circle (RADIUS) /’,g/g%====‘§s~.m”’;ggggggi\\
A A 77 T 75NN
turtle.left (ANGLE) %ww%%w+
ot e
W I)
e
NN AN
NS
N

=

Turtle Graphics: Using Loops to Draw
Designs

e This code draws a sequence of 36 straight lines to
make a "starburst" design.
START X = -200
START Y = 0
NUM LINES = 36

LINE LENGTH = 400
ANGLE = 170

Angle to turn 0 ' L }
turtle.hideturtle () . 1 | . f,
turtle.penup () : \\ ‘ // .
turtle.goto (START X, START Y) .\\‘\.-k‘-‘ ’;“"!"/.
g _ _ . \\qg) !q,/é .

turtle.pendown ()

for x in range (NUM LINES) : _ R _
turtle.forward (LINE LENGTH) /y// v \\\\
turtle.left (ANGLE) ,. // \\ _'

Starting X coordinate
Starting Y coordinate
Number of lines to draw
Length of each line

H H H = FH

Turtle Graphics: Modularizing Code
with Functions

e Commonly needed turtle graphics operations can be stored in
functions and then called whenever needed.

e For example, the following function draws a square. The
parameters specify the location, width, and color.

def square(x, y, width, color)
turtle.penup () Raise the pen

Move to (X,Y)

Set the fill color

Lower the pen

Start filling

Draw a square

turtle.goto(x, V)

turtle.fillcolor (color)

turtle.pendown ()

turtle.begin fil1l()

for count in range(4):
turtle.forward (width)
turtle.left (90)

turtle.end £fill() # End filling

R A AT

Turtle Graphics: Modularizing Code
with Functions

e The following code calls the previously shown square function
to draw three squares:

square (100, 0, 50, 'red')
square (-150, -100, 200, 'blue')
square (-200, 150, 75, 'green')

Turtle Graphics: Modularizing Code
with Functions

e The following function draws a circle. The parameters specify the
location, radius, and color.

def circle(x,

turtle
turtle

turtle
turtle

fillcolor (color)

.pendown ()

.begin fill ()
turtle.
turtle.

circle (radius)
end fill ()

y, radius, color):
.penup ()

.goto(x, y - radius)
turtle.

H H H H H H

Raise the pen
Position the turtle
Set the fill color
Lower the pen

Start filling

Draw a circle

End filling

Turtle Graphics: Modularizing Code
with Functions

e The following code calls the previously shown circle function
to draw three circles:

circle (0, 0, 100, 'red") I
circle (=150, =75, 50, 'blue')
circle(-200, 150, 75, 'green') .

Turtle Graphics: Modularizing Code
with Functions

e The following function draws a line. The parameters specify the
starting and ending locations, and color.

def line(startX, startY, endX, end¥, color):

turtle.
turtle.
turtle.
turtle.
turtle.

penup ()

goto(startX, startY)
pendown ()

pencolor (color)

goto (endX, endY)

#

i
i
i
i

Raise the pen

Move to the starting point
Lower the pen

Set the pen color

Draw a square

Turtle Graphics: Modularizing Code
with Functions

e The following code calls the previously shown 11ine function to
draw a triangle: '

TOP X = 0

TOP Y = 100

BASE LEFT X = -100
BASE LEFT Y = -100
BASE RIGHT X = 100
BASE RIGHT Y = -100

line (TOP_X, TOP Y, BASE LEFT X, BASE LEFT Y, 'red')
line (TOP X, TOP Y, BASE RIGHT X, BASE RIGHT Y, 'blue')
line (BASE LEFT X, BASE LEFT Y, BASE RIGHT X, BASE RIGHT Y, 'green')

