
CN101
Lecture 13-14

More About Strings



Topics

• Basic String Operations
• String Slicing
• Testing, Searching, and Manipulating Strings

2



Basic String Operations

• Many types of programs perform operations on strings
• In Python, many tools for examining and manipulating 

strings
• Strings are sequences, so many of the tools that work with 

sequences work with strings

• Display the character by using print()function
• Assigning a string into a variable can be done by quotes.

3

>> a = “Hello”
>> print (a)
Hello

>> print (“Hello”)
Hello



Accessing the Individual Characters 
in a String
• To access an individual character in a string:
• Use a for loop

• Format: for character in string:
• Useful when need to iterate over the whole string, such as to count 

the occurrences of a specific character

4



5



6



Accessing the Individual Characters 
in a String
• To access an individual character in a string:
• Use indexing

• Each character has an index specifying its position in the string, 
starting at 0

• Format: character = my_string[i]

7



Accessing the Individual Characters in a 
String (cont’d.)
•IndexError exception will occur if:
• You try to use an index that is out of range for the string

Likely to happen when loop iterates beyond the end of the string

•len(string) function can be used to obtain the 
length of a string

Useful to prevent loops from iterating beyond the end of a 
string

8



String Concatenation

• Concatenation: appending one string to the end of 
another string
• Use the + operator to produce a string that is a combination 

of its operands
• The augmented assignment operator += can also be used to 

concatenate strings
• The operand on the left side of the += operator must be an existing 

variable; otherwise, an exception is raised

9



Strings Are Immutable

• Strings are immutable
• Once they are created, they cannot be changed

• Concatenation doesn’t actually change the existing string, but rather 
creates a new string and assigns the new string to the previously used 
variable

• Cannot use an expression of the form 
• string[index] = new_character

• Statement of this type will raise an exception

10



Strings Are Immutable (cont’d.)
11



String Slicing

• Slice: span of items taken from a sequence, known as 
substring
• Slicing format: string[start : end]

• Expression will return a string containing a copy of the characters 
from start up to, but not including, end

• If start not specified, 0 is used for start index
• If end not specified, len(string) is used for end index

• Slicing expressions can include a step value and negative 
indexes relative to end of string

12



13



Testing, Searching, and Manipulating 
Strings
• You can use the in operator to determine whether one 

string is contained in another string
• General format: string1 in string2

• string1 and string2 can be string literals or variables 
referencing strings

• Similarly you can use the not in operator to 
determine whether one string is not contained in 
another string

14



String Methods

• Strings in Python have many types of methods, divided 
into different types of operations
• General format: 

mystring.method(arguments)

• Some methods test a string for specific characteristics
• Generally Boolean methods, that return True if a condition 

exists, and False otherwise

15



String Methods (cont’d.)
16



17



18



String Methods (cont’d.)

• Some methods return a copy of the string, to which 
modifications have been made
• Simulate strings as mutable objects

• String comparisons are case-sensitive
• Uppercase characters are distinguished from lowercase 

characters
• lower and upper methods can be used for making case-

insensitive string comparisons

19



20



21



String Methods (cont’d.)

• Programs commonly need to search for substrings
• Several methods to accomplish this:
• endswith(substring): checks if the string ends with 
substring

• Returns True or False
• startswith(substring): checks if the string starts with 
substring

• Returns True or False

22



23



String Methods (cont’d.)

• Several methods to accomplish this (cont’d):
• find(substring): searches for substring within the 

string
• Returns lowest index of the substring, or if the substring is not 

contained in the string, returns -1
• replace(substring, new_string): 

• Returns a copy of the string where every occurrence of substring
is replaced with new_string

24



25



String Methods (cont’d.)
26



The Repetition Operator

• Repetition operator: makes multiple copies of a string 
and joins them together
• The * symbol is a repetition operator when applied to a string 

and an integer
• String is left operand; number is right

• General format: string_to_copy * n
• Variable references a new string which contains multiple 

copies of the original string

27



28



Splitting a String

•split method: returns a list containing the words in 
the string
• By default, uses space as separator
• Can specify a different separator by passing it as an argument 

to the split method

29



30



31



String Join

• Join: method takes an iterable (objects capable of 
returning its members one at a time) as its parameter.

• The Join method returns a string created by joining the elements of 
an iterable by string separator.

32

>>> numList = ['1', '2', '3', '4'] 
>>> separator = ', ' 
>>> print(separator.join(numList))
1, 2, 3, 4

test = {'1', '2', '3'} 
s = ', ' 
print(s.join(test))
1, 2, 3

text = {'A', 'B', 'C’} 
a = '- ' 
print(a.join(text))
A-B-C



Summary

• This chapter covered:
• String operations, including:

• Methods for iterating over strings
• Repetition and concatenation operators
• Strings as immutable objects
• Slicing strings and testing strings
• String methods
• Splitting a string

33


