CN101

Lecture 13-14
More About Strings

Topics

e Basic String Operations
e String Slicing
e Testing, Searching, and Manipulating Strings

Basic String Operations

e Many types of programs perform operations on strings

e In Python, many tools for examining and manipulating
strings
 Strings are sequences, so many of the tools that work with
sequences work with strings

* Display the character by using print () function
* Assigning a string into a variable can be done by quotes.

>> print (“Hello”) >>a = “Hello”
Hello >> print (a)
Hello

Accessing the Individual Characters
In a String

e To access an individual character in a string:
e Usea for loop

e Format: for character 1n string:

e Useful when need to iterate over the whole string, such as to count
the occurrences of a specific character

>>> name = 'Juliet’
>>> r ch name:
print(ch)

+ o = —c O

1st Iteration for ch 1in

name:

print(ch)

name ——»

'Juliet’

ch —

|JI

3rd Iteration for ch 1in

name:

print(ch)

name ——={'Juliet'

ch —»

l'll

5th lteration for ch 1in

name:

print(ch)

name —— ' Juliet'

ch —»

e

2nd lteration for ch 1in

name:

print(ch)

name ——

"Juliet'

ch —»

u

4th Iteration for ch in

name:

print(ch)

name ——=|' Juliet'

ch —»

l.il

6th Iteration for ch 1in

name:

print(ch)

name —— ' Juliet'

ch —»

ltl

Program 8-1 (count_Ts.py)

1 # This program counts the number of times
2 # the letter T (uppercase or lowercase)
3 # appears in a string.
4
5 def main():
6 # Create a variable to use to hold the count.
7 # The variable must start with 0.
8 count = 0
9
10 # Get a string from the user.
11 my_string = input('Enter a sentence: ')
12
13 # Count the Ts.
14 for ch in my_string:
15 if ch == 'T" or ch == "t":
16 count += 1
17
18 # Print the result.
19 print('The letter T appears', count, 'times.')
20
21 # Call the main function.
22 main()

Program Output (with input shown in bold)

Enter a sentence: Today we sold twenty-two toys.
The letter T appears 5 times.

Accessing the Individual Characters
In a String

e To access an individual character in a string:

* Use indexing

e Each character has an index specifying its position in the string,
starting at O

* Format: character = my stringl[i]

>>> my_string = 'Roses are red’ |l'"p 5 s es are red
>>> ch = my_string[6] BEEEEEEE }
>>> print(my_string) 0123 45678 9101112

Roses are red

my_string ———» 'Roses are red'

>>> print(ch)

a

Ch—» |a|

Accessing the Individual Characters in a
String (cont’d.)

« IndexError exception will occur if:

* You try to use an index that is out of range for the string
Likely to happen when loop iterates beyond the end of the string

len (string) function can be used to obtain the
length of a string

Useful to prevent loops from iterating beyond the end of a

string [>>> my_string = 'Roses are red’
>>> my_string[20]
Traceback (most recent call last):
File "<pyshell#86>", line 1, 1n <module>
my_string[20]
IndexError: string index out of range
>>> Len(my_string)
13

String Concatenation

e Concatenation: appending one string to the end of
another string

* Use the + operator to produce a string that is a combination
of its operands

* The augmented assignment operator += can also be used to

concatenate strings

e The operand on the left side of the += operator must be an existing
variable; otherwise, an exception is raised

>>>
>>>
>>2>
>>>

Emily Yeager

first_name = "Emily’ >>> letters = "abc’
last_name = 'Yeager' >>> letters += 'def’
full_name = first_name + " ' + last_name | >>> print(letters)
print(full_name) abcdef

10

Strings Are Immutable

e Strings are immutable

* Once they are created, they cannot be changed

e Concatenation doesn’t actually change the existing string, but rather
creates a new string and assigns the new string to the previously used

variable
e Cannot use an expression of the form
* stringl[index] = new character

e Statement of this type will raise an exception

Strings Are Immutable (cont’d.)

Program 8-2 (concatenate.py)

This program concatenates strings.

2 name = 'Carmen'
3 def main():
4 name = 'Carmen' name ——»| Carmen
5 print('The name is', name)
name = name + ' Brown'

print('Now the name is', name)

name = name + ' Brown'
Call the main function.

main() name —; Carmen

Program Output —| Carmen Brown

The name is Carmen
Now the name is Carmen Brown

String Slicing

e Slice: span of items taken from a sequence, known as
substring

e Slicing format: string([start : end]

e Expression will return a string containing a copy of the characters
from start up to, but not including, end

e |f start not specified, 0 is used for start index
e |f endnot specified, 1en (string) is used for end index

* Slicing expressions can include a step value and negative
indexes relative to end of string

>>> full_name = "Patty Lynn Smith'’
>>> middle_name = full_name[6:10]
>>> print(middle_name)

Lynn

>>> first_name = full_name[:5]
>>> print(first_name)

Patty

>>> last_name = full_name[11:]
>>> print(last_name)

Smith

>>> Last_name = full_name[-5:]
>>> print(last_name)

Smith

>>> my_string = full_name[:]

>>> print(my_string)

Patty Lynn Smith

>>> letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ'
>>> print(letters[0:26:2])
ACEGIKMOQSUWY

>>> print(letters[::2])
ACEGIKMOQSUWY

>>> print(letters[::-1])
ZYXWVUTSRQPONMLKJIHGFEDCBA

13

Testing, Searching, and Manipulating
Strings

e You can use the in operator to determine whether one
string is contained in another string
* General format: stringl in string?Z2

» stringl and stringZ2 can be string literals or variables
referencing strings

e Similarly you can use the not in operator to

determine whether one string is not contained in
another string

text = 'Four score and seven years ago'
if 'seven' 1in text:

print('The string "seven" was found.')
else:

print('The string "seven" was not found.')

String Methods

e Strings in Python have many types of methods, divided
into different types of operations

* General format:
mystring.method(arguments)
e Some methods test a string for specific characteristics

* Generally Boolean methods, that return True if a condition
exists, and False otherwise

16

String Methods (cont’d.)

Method Description

isalnum() Returns true if the string contains only alphabetic letters or digits and is at
least one character in length. Returns false otherwise.

isalpha() Returns true if the string contains only alphabetic letters and is at least one
character in length. Returns false otherwise.

isdigit() Returns true if the string contains only numeric digits and is at least one
character in length. Returns false otherwise.

isTower () Returns true if all of the alphabetic letters in the string are lowercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

isspace() Returns true if the string contains only whitespace characters and is at least
one character in length. Returns false otherwise. (Whitespace characters are
spaces, newlines (\n), and tabs (\t).

isupper() Returns true if all of the alphabetic letters in the string are uppercase, and the

string contains at least one alphabetic letter. Returns false otherwise.

Program 8-5 (string_test.py)

O ~NOO O B WN -

(=)

10
11
12
13
14
15
16
17
18
19
20
21
22

This program demonstrates several string testing methods.

def main():
Get a string from the user.
user_string = input('Enter a string: ')

print('This is what I found about that string:')

Test the string.
if user_string.isalnum():

print('The string is alphanumeric.')

if user_string.isdigit():

print('The string contains only digits.')

if user_string.isalpha():

print('The string contains only alphabetic characters.')

if user_string.isspace():

print('The string contains only whitespace characters.')

if user_string.islower():

print('The letters in the string are all lowercase.')

if user_string.isupper():

print('The letters in the string are all uppercase.')

23 # Call the string.

24

main()

17

18

Program Output (with input shown in bold)

Enter a string: abc (Enter)

This is what I found about that string:

The string is alphanumeric.

The string contains only alphabetic characters.
The letters in the string are all lowercase.

Program Output (with input shown in bold)

Enter a string: 123 (Enter)

This is what I found about that string:
The string is alphanumeric.

The string contains only digits.

Program Output (with input shown in bold)

Enter a string: 123ABC (Enter)

This is what I found about that string:

The string is alphanumeric.

The letters in the string are all uppercase.

String Methods (cont’d.)

e Some methods return a copy of the string, to which
modifications have been made

e Simulate strings as mutable objects

e String comparisons are case-sensitive

* Uppercase characters are distinguished from lowercase
characters

* lower and upper methods can be used for making case-
insensitive string comparisons

Method Description 20

lower () Returns a copy of the string with all alphabetic letters converted to lower-
case. Any character that is already lowercase, or is not an alphabetic letter, is
unchanged.

I1strip() Returns a copy of the string with all leading whitespace characters removed.
Leading whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the beginning of the string.

1strip(char) The char argument is a string containing a character. Returns a copy of the string
with all instances of char that appear at the beginning of the string removed.

rstrip() Returns a copy of the string with all trailing whitespace characters removed.
Trailing whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the end of the string.

rstrip(char) The char argument is a string containing a character. The method returns
a copy of the string with all instances of char that appear at the end of the
string removed.

strip() Returns a copy of the string with all leading and trailing whitespace characters
removed.

strip(char) Returns a copy of the string with all instances of char that appear at the
beginning and the end of the string removed.

upper () Returns a copy of the string with all alphabetic letters converted to uppercase. Any

character that is already uppercase, or is not an alphabetic letter, is unchanged.

>>> letters = "WXYZ'

>>> print(letters, letters.lower())
WXYZ wxyz

>>> letters = "WXYZ'

>>> print(letters.lower())

WXYZ
>>> print(letters)

WXYZ

>>> letters = "abcd’

>>> print(letters.upper())
ABCD

>>> Letters

>>> Letters
'middle’

>>> Letters.

" middle’
>>> letters
'middle '
>>> letters
>>> letters
"idleee’

>>> Letters.

"idleee’
>>> letters
"mmmidl’
>>> letters
"1dl’

N
[HES

= ' middle '

strip()

rstrip(Q)

.Lstrip(Q)

= "'mmmidleee’

Sstrip('m")

lstrip('m")

.rstrip('e’)

.rstripC'e’).lstrip('m")

String Methods (cont’d.)

e Programs commonly need to search for substrings

e Several methods to accomplish this:

* endswith (substring):checks if the string ends with
substring
e Returns True or False
e startswith (substring): checks if the string starts with
substring
e Returns True or False

23

filename = input('Enter the filename: ')
if filename.endswith('.txt'):
print('That is the name of a text file.')
elif filename.endswith('.py'):
print('That is the name of a Python source file.')
elif filename.endswith('.doc'):
print('That is the name of a word processing document.')

else:
print('Unknown file type.')

String Methods (cont’d.)

e Several methods to accomplish this (cont’d):

e find (substring):searches for substring withinthe
string

e Returns lowest index of the substring, or if the substring is not
contained in the string, returns -1

* replace (substring, new string):

e Returns a copy of the string where every occurrence of substring
is replaced with new string

25

string = 'Four score and seven years ago'
position = string.find('seven')
if position != -1:

print('The word "seven" was found at index', position)

else:
print('The word "seven" was not found.')

This code will display

The word "seven" was found at index 15

string = 'Four score and seven years ago'
new_string = string.replace('years', 'days')
print(new_string)

This code will display

Four score and seven days ago

26

String Methods (cont’d.)

Method Description

endswith (substring) The substring argument is a string. The method returns true if
the string ends with substring.

find(substring) The substring argument is a string. The method returns

replace(old, new)

startswith(substring)

the lowest index in the string where substring is found. If
substring is not found, the method returns -1.

The o71d and new arguments are both strings. The method returns
a copy of the string with all instances of o1d replaced by new.

The substring argument is a string. The method returns true if
the string starts with substring.

The Repetition Operator

e Repetition operator: makes multiple copies of a string
and joins them together
 The * symbol is a repetition operator when applied to a string
and an integer
e String is left operand; number is right
* General format: string to copy * n

* Variable references a new string which contains multiple
copies of the original string

>>> my_string = 'w' * 5
>>> print(my_string)
WWWWW

>>> print('Hello" * 5)
HelloHelloHelloHelloHello

27

Program 8-8 (repetition_operator.py)

1
2
3
4
5
6
I
8

9
10
11
12
13

This program demonstrates the repetition operator.

def main():
Print nine rows increasing in length.
for count in range(1, 10):
print('Z' * count)

Print nine rows decreasing in length.
for count in range(8, 0, -1):
print('Z"' * count)

Call the main function.
main()

28
Program Output

Z

7

L77

L7277
L7777
£77777
[777777
£7777777
L77777777
£7777777
L777777
£77777
L7777
L7277

77

ZZ

Z

Splitting a String

e split method: returns a list containing the words in
the string
* By default, uses space as separator

* Can specify a different separator by passing it as an argument
to the split method

>>> date_string = '11/26/2018"

>>> date_list = date_string.split('/")
>>> print(date_list)

['11", "26", '2018']

29

Program 8-9 (string_split.py)

1
2
3
4
5
6
[
8

9
10
11
12
13
14

This program demonstrates the split method.

def main():
Create a string with multiple words.
my string = 'One two three four'

Split the string.
word_Tist = my_string.split()

Print the Tist of words.
print(word_Tlist)

Call the main function.
main()

Program Output

['One', 'two', 'three', 'four']

30

Program 8-10 (split_date.py)

1 # This program calls the split method, using the
2 # '|' character as a separator.

3

4 def main():

5 # Create a string with a date.

6 date_string = '11/26/2018"

-

8 # Split the date.

9 date_list = date_string.split('/")
10
11 # Display each piece of the date.
12 print('Month:', date_1ist[0])
13 print('Day:"', date Tist[1])
14 print('Year:', date_list[2])
15
16 # Call the main function.
17 main()

Program Output
Month: 11

Day: 26

Year: 2018

31

String Join

e Join: method takes an iterable (objects capable of
returning its members one at a time) as its parameter.

e The Join method returns a string created by joining the elements of
an iterable by string separator.

>>> numlist = ['1', '2', '3', '4] test={'1",'2','3"} text = {'A', 'B', 'C’}
>>> separator ="', s="" a=""
>>> print(separator.join(numlList)) print(s.join(test)) print(a.join(text))
1,2,3,4 1,2,3 A-B-C

Summary

e This chapter covered:
 String operations, including:

e Methods for iterating over strings
e Repetition and concatenation operators
e Strings as immutable objects

Slicing strings and testing strings

String methods

Splitting a string

