CN101

Lecture 11-12
Lists and Tuples

Topics

e Sequences

e Introduction to Lists

e List Slicing

e Finding Items in Lists with the in Operator
e List Methods and Useful Built-in Functions
e Copying Lists

e Two-Dimensional Lists

e Tuples

Sequences

e Sequence: an object that contains multiple items of
data

* The items are stored in sequence one after another

 Python provides different types of sequences, including
lists and tuples

e The difference between these is that a list is mutable and a
tuple is immutable

Introduction to Lists

e List: an object that contains multiple data items

e Element: An item in a list
e Format: 11st = [1teml, 1temZ2, etc.]

* Can hold items of different types
 print function can be used to display an entire list

>>> numbers = [5, 10, 15, 20]
>>> print (numbers)
(5, 10, 15, 20]

« 1ist () function can convert certain types of objects

to lists >>> numbers = list (range(1l, 10, 2))
>>> print (numbers)
(1, 3, 5, 7, 9]

Introduction to Lists (cont’d.)

* Here is a statement that creates a list of integers:

even_numbers

names =

[2, 4, 6, 8, 10]
even_numbers = 2 (4 |6 | 8|10
* The following is another example:
['Molly', 'Steven', 'Will', 'Alicia', 'Adriana']
names » | Molly | Steven| Will [Alicia |Adriana

* Alist can hold items of different types, as shown in the following
example:

['Alicia', 27, 1550.87] |info

info =

» |Alicia 27

1550.87

The Repetition Operator and
lterating over a List

e Repetition operator: makes multiple copies of a list and
joins them together
* The * symbol is a repetition operator when applied to a
sequence and an integer
e Sequence is left operand, number is right

e General format: 1ist * n

>>> numbers = [1, 2, 3] * 3 [Enter
>>> print(numbers) [Enter)
(1, 2, 3, 1, 2, 3, 1, 2, 3]

e You can iterate over a list usinga for loop
* Format: for x 1n Ilist:

numbers = [99, 100, 101, 102]
for n in numbers:
print(n)

Indexing

e Index: a number specifying the position of an element
in a list

* Enables access to individual element in list

* Index of first element in the list is 0, second elementis 1, and
n’th element is n-1

* Negative indexes identify positions relative to the end of the
list
e The index -1 identifies the last element, -2 identifies the next to last
element, etc.

>>> numbers = [1, 2, 3, 4, 5]

>>> print (numbers[0], numbers[2])

1 3

>>> print (numbers([-1], numbers[-3])
5 3

The 1en function

e An IndexError exception is raised if an invalid index
is used

e 1en function: returns the length of a sequence such as
a list
* Example: size = len(my 1ist)

 Returns the number of elements in the list, so the index of
last elementis len (1ist) -1

e Can be used to prevent an IndexError exception when
iterating over a list with a loop

>>> numbers = [1, 2, 3, 4, 5]
>>> print (len (numbers))

5

Lists Are Mutable

e Mutable sequence: the items in the sequence can be
changed

* Lists are mutable, and so their elements can be changed
e An expression such as

° list[1l] = new wvalue can be used to assign a
new value to a list element
* Must use a valid index to prevent raising of an IndexError

exception == numbers = [1, 2, 3, 4, 5]
>>> print (numbers)

(1, 2, 3, 4, 5]

>>> numbers([2] = 10

>>> print (numbers)
(1, 2, 10, 4, 5]

Program 7-1 (sales_list.py)

O NO OV s W -

U N W WL
O 00O NO O & W - O

NN
- O

NN NN NN
~N OO O s W N

The NUM_DAYS constant holds the number of
days that we will gather sales data for.
NUM_DAYS = 5

def main():
Create a list to hold the sales
for each day.
sales = [0] * NUM_DAYS

Create a variable to hold an index.
index = 0

print('Enter the sales for each day.')

Get the sales for each day.
while index < NUM_DAYS:

print('Day #', index + 1, ': ', sep='", end="")
sales[index] = float(input())
index += 1

Display the values entered.
print('Here are the values you entered:')
for value in sales:

print(value)

Call the main function.
main()

Program Output (with input shown in b°1'8?

Enter the sales for each day.

Day #1:
Day #2:
Day #3:
Day #4:
Day #5:

1000
2000
3000
4000
5000

Here are the values you entered:

1000.0
2000.0
3000.0
4000.0
5000.0

11

Concatenating Lists

e Concatenate: join two things together

e The + operator can be used to concatenate two lists

— Cannot concatenate a list with another data type, such as a
number

e The += augmented assighnment operator can also be
used to concatenate lists

>>> listl
>>> 1ist2
>>> 1ist3
>>> print (
[11 2/ 3/

[1,
[,

1ist3)

-
! ‘)I

e e |

2,
6,

6,

3,
7y

7y

4]
8]

listl + list?2

8]

>>> girl_names = ['Joanne', 'Karen', 'Lori'] [(Enter)
>>> girl_names += ['Jenny', 'Kelly'] [(Enter]

>>> print(girl_names) (Enter)

['Joanne', 'Karen', 'Lori', 'Jenny', 'Kelly']

List Slicing

e Slice: a span of items that are taken from a sequence

 Listslicing format: 1ist[start
* Span is a list containing copies of elements from start up

to, but not including, end

end]

e |f start not specified, 0 is used for start index
e |f endnot specified, len (1ist) is used for end index

* Slicing expressions can include a step value and negative

indexes relative to end of list

>>>
>>>
[2,
>>>
L1,

numbers = [1, 2, 3, 4, 5]
print (numbers[1:3])

3]

print (numbers[:3])

2, 3]

>>>
[3,
>>>
[1,
>>>
[2,
>>>
L5,

print (numbers[2:])

4, 5]

print (numbers([:])

2, 3, 4, 5]

print (numbers[1::2])
4]

print (numbers[-1::-2])
3, 1]

Finding Items in Lists with the in
Operator

e You can use the in operator to determine whether an
item is contained in a list

e General format: 1tem in 1ist
 Returns True if the itemisin the list, or False ifitis notin
the list

e Similarly you can use the not in operator to
determine whether an item is not in a list

Program 7-2 (in_list.py)

1 # This program demonstrates the in operator

2 ¥ used with a list.

3

4 def main():

5 # Create a list of product numbers.

6 prod_nums = ['V475', 'F987', 'Q143', 'R688']

7

8 # Get a product number to search for.

9 search = input('Enter a product number: ')
10
11 # Determine whether the product number is in the Tlist.
12 if search in prod_nums:
13 print(search, 'was found in the 1list.')
14 else:
15 print(search, 'was not found in the Tlist.')
16
17 # Call the main function.
18 main()

Program Output (with input shown in bold)

Enter a product number: Q143 (Enter)
Q143 was found in the 1ist.

Program Output (with input shown in bold)

Enter a product number: BOOO [(Enter)
BO00 was not found in the 1ist.

14

List Methods

e append (item):usedtoadditemstoalist—itemis
appended to the end of the existing list

>>> numbers = [1, 2, 3, 4, 5]
>>> numbers.append(6)
>>> print(numbers)

[1’ 2’ 3’ 4’ 5’ 6]

15

List Methods (cont’d.)

e index (1tem): used to determine where an item is
located in a list
e Returns the index of the first element in the list containing
1tem
* Raises ValueError exception if i temnotin the list
>>> numbers = [1, 2, 3, 4, 5]
>>> numbers.index(3)
2
>>> numbers.index(7)
Traceback (most recent call last):
File "<pyshell#26>", line 1, 1n <module>

numbers.index(7)
ValueError: 7 1s not in list

16

Program 7-3 (1list_append.py)

1 # This program demonstrates how the append
2 # method can be used to add items to a list.
3
4 def main():
5 # First, create an empty list.
6 name_list = []
7
8 # Create a variable to control the loop.
g again = 'y'
10
11 # Add some names to the list.
12 while again == 'y':
13 # Get a name from the user.
14 name = input('Enter a name: ')
15
16 # Append the name to the list.
17 name_list.append(name)
18
19 # Add another one?
20 print('Do you want to add another name?')
21 again = input('y = yes, anything else = no: ')
22 print()

N
w

24 # Display the names that were entered.

25 print('Here are the names you entered.')
26

27 for name in name_list:

28 print(name)

29

30 # Call the main function.

31 main()

Program Output (with input shown in bold)

Enter a name: Kathryn (Enter]
Do you want to add another name?
y = yes, anything else = no: y (Enter]

Enter a name: Chris (Enter)
Do you want to add another name?
y = yes, anything else = no: y (Enter]

Enter a name: Kenny
Do you want to add another name?
y = yes, anything else = no: y (Enter]

Enter a name: Renee (Enter)

Do you want to add another name?
y = yes, anything else = no: n (Enter]

Here are the names you entered.
Kathryn

Chris

Kenny

Renee

List Methods (cont’d.)

einsert (index, item):usedtoinsert itemat
position indexin the list

e sort ():used to sort the elements of the list in
ascending order

>>> numbers = [1, 3, 2, 6, 4]
>>> numbers.insert(2, 5)

>>> print(humbers)

[1’ 3) 5’ 2) 6, 4]

>>> humbers.sort()

>>> print(numbers)

[1’ 2’ 3’ 4’ 5’ 6]

19

Program 7-5 (insert_list.py)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

This program demonstrates the insert method.

def main():

Create a list with some names.
names = ['James', 'Kathryn', 'Bi11']

Display the Tist.
print('The 1ist before the insert:')
print(names)

Insert a new name at element 0.
names.insert(0, 'Joe')

Display the Tlist again.
print('The 1ist after the insert:')
print(names)

Call the main function.
main()

Program Output

The 1ist before the insert:
['James', 'Kathryn', 'Bill']

The Tist after the insert:

['Joe', 'James', 'Kathryn', 'Bi1l1']

20

List Methods (cont’d.)

e remove (1tem): removes the first occurrence of
itemin the list

e Raises ValueError exception if 1 temnotin the list

e reverse () : reverses the order of the elements in the

list > numbers = [1, 2, 3, 2, 5]
>>> numbers.remove(2)

>>> print(numbers)

[1, 3, 2, 5]

>>> numbers.reverse()

>>> print(humbers)

[5’ IZ, 3’ 1]

Useful Built-in Functions

e« del statement: removes an element from a specific
index in a list
e General format: del 1ist[1]

>>> numbers = [1, 2, 3, 4, 5]
>>> del numbers[3]
>>> print(numbers)
[1: 2, 3: 5]
>>> del numbers[5]
Traceback (most recent call last):
File "<pyshell#45>", 1line 1, 1n <module>

del numbers[5]

InderError: list assignment index out of range

22

Useful Built-in Functions (cont’d.)

min and max functions: built-in functions that
returns the item that has the lowest or highest value in
a sequence

* The sequence is passed as an argument

e Sum functions: built-in functions that returns the sum
of all values in a sequence

>>> my_list = [5, 4, 3, 2, 50, 40, 30]

>>> print('The lowest value is', min(my_list))
The lowest value 1s 2

>>> print('The highest value 1s', max(my_list))
The highest value is 50

>>> print('The sum 1s', sum(my_list))

The sum 1s 134

24

List Referencing

Create a list.

list1 = [1, 2, 3, 4] >>> list1 = [1, 2, 3, 4]

Assign the Tist to the Tist2 variable. ||s5s 1ist2 = 1isti

11st2 = 11ist1 >>> print(list1)

[1, 2, 3, 4]

» After this code executes, both >>> print(1ist2)
variables listl and list2 will (1, 2, 3, 4]
reference the same list in >>> 11st1[0] = 99

>>> print(list1)
memory. [99, 2, 3, 4]
list1 >>> print(list2)
\ [99, 2, 3, 4]
112 3 4 >>>

Copying Lists

e To make a copy of a list you must copy each element of

the list
e Two methods to do this:

e Creating a new empty list and using a for loop to add a copy of each
element from the original list to the new list

e Creating a new empty list and concatenating the old list to the new

empty list

Create a list with values.
list1 = [1, 2, 3, 4]
Create an empty 1list.
list2 = []
Copy the elements of Tist1 to 1ist2.
for item in Tist1:
Tist2.append(item)

Create a list with values.
list1 = [1, 2, 3, 4]

Create a copy of 1list1.
list2 = [] + Tist1

25

Asaresult,listl and 1list2 will

reference two separate but identical lists.

Program 7-7

> N

(barista_pay.py)

This program calculates the gross pay for
each of Megan's baristas.

NUM_EMPLOYEES is used as a constant for the
size of the list.
NUM_EMPLOYEES = 6

def main():
Create a list to hold employee hours.
hours = [0] * NUM_EMPLOYEES

Get each employee's hours worked.
for index in range(NUM_EMPLOYEES) :
print('Enter the hours worked by employee ',
index + 1, ': ', sep="'", end="")
hours[index] = float(input())

Get the hourly pay rate.
pay_rate = float(input('Enter the hourly pay rate:

Display each employee's gross pay.
for index in range(NUM_EMPLOYEES) :
gross_pay = hours[index] * pay_rate
print('Gross pay for employee ', index + 1, ':
format(gross_pay, ',.2f'), sep='")

$',

Call the main function.
main()

26
Program Output (with input shown in bold)
Enter the hours worked by employee 1: 10 (Enter)
Enter the hours worked by employee 2: 20 (Enter)
Enter the hours worked by employee 3: 15 (Enter)
Enter the hours worked by employee 4: 40 (Enter)
Enter the hours worked by employee 5: 20 (Enter)
Enter the hours worked by employee 6: 18 (Enter)
Enter the hourly pay rate: 12.75 (Enter)
Gross pay for employee 1: $127.50
Gross pay for employee 2: $255.00
Gross pay for employee 3: $191.25
Gross pay for employee 4: $510.00
Gross pay for employee 5: $255.00
Gross pay for employee 6: $229.50

Two-Dimensional Lists

e Two-dimensional list: a list that contains other lists as its
elements

* Also known as nested list

« Common to think of two-dimensional lists as having rows and
columns

» Useful for working with multiple sets of data

e To process data in a two-dimensional list need to use
two indexes

e Typically use nested loops to process

28

Two-Dimensional Lists (cont’d.)

>>> students = [["Joe’, "Kim'], ["Sam’, "Sue'], ['Kelly", "Chris']]
>>> print(students)

[["Joe’, "Kim'], ["Sam', 'Sue'], ['Kelly', "Chris']]
>>> print(students[0]) Column0 Column 1
| Joe ? Kim"] . Row 0 'Joe' 'Kim'
>>> print(students[1])
["Sam®, "Sue'] Row1| 'Sam' 'Sue'
>>> print(students[2])
['Kelly', "Chris'] Row2| 'Kelly' | 'Chris’
>>> print(students[0][0])
Joe Column 0 Column 1 Column 2
scores = [O O O Row 0 | scores[0] [0] | scores[0][1] | scores[0][2]
- | V' ’ 1l
'O, O O', Row 1| scores[1][0] | scores[1][1] | scores[1][2]
:O’ O O] Row 2 | scores[2][0] | scores[2][1] | scores[2][2]

Program 7-18 (random_numbers.py)
29

This program assigns random numbers to
a two-dimensional list.
import random

1
2
3
4
5 # Constants for rows and columns
5 ROWS = 3
7 COLS = 4

8

9 def main():
10 # Create a two-dimensional 1ist.
11 values = [[0, O, 0, 0],

12 [0, 0, 0, O],

13 [0, 0, 0, 0]]

14

15 # Fill the list with random numbers.

16 for r in range(ROWS):

17 for ¢ in range(COLS):

18 values[r][c] = random.randint(1, 100)
19
20 # Display the random numbers.

21 print(values)
29 Program Output

23 # Call the main function. [[4, 17, 34, 24], [46, 21, 54, 10], [54, 92, 20, 100]]
24 main()

Tuples

e Tuple: an immutable sequence
* Very similar to a list
* Once itis created it cannot be changed
* Format: tuple name = (iteml, 1tem2)
* Tuples support operations as lists
e Subscript indexing for retrieving elements

Methods such as index
Built in functions such as 1len, min, max, sum

Slicing expressions
The in, +, and * operators

Tuples (cont’d.)

e Tuples do not support the methods:
* append
* remove
* 1nsert
® reverse
* sort

e Tuples do not support del statement

>>> my_tuple = (1, 2, 3, 4, 5)
>>> print(my_tuple)
(1, 2, 3, 4, 5)

>>> names = ('Holly', 'Warren', 'Ashley')
>>> for n in names:
print(n) (Enter] (Enter)

Holly
Warren
Ashley

>>> names = ('Holly', 'Warren', 'Ashley')
>>> for i 1in range(len(names)):
print(names[i]) (Enter] (Enter)

Holly
wWarren
Ashley

32

Tuples (cont’d.)

e Advantages for using tuples over lists:
* Processing tuples is faster than processing lists
* Tuples are safe
* Some operations in Python require use of tuples

e« 1ist () function: converts tuple to list

 tuple () function: converts list to tuple

34

NOTE: If you want to create a tuple with just one element, you must write a trailing
comma after the element’s value, as shown here:

my_tuple = (1,) # Creates a tuple with one element.

If you omit the comma, you will not create a tuple. For example, the following state-
ment simply assigns the integer value 1 to the value variable:

value = (1) # Creates an integer.

Summary

e This chapter covered:
* Lists, including:
e Repetition and concatenation operators
e |Indexing
e Techniques for processing lists
e Slicing and copying lists
List methods and built-in functions for lists
e Two-dimensional lists
* Tuples, including:
e Immutability
e Difference from and advantages over lists

