
CN101
Lecture 11-12

Lists and Tuples

Topics

• Sequences
• Introduction to Lists
• List Slicing
• Finding Items in Lists with the in Operator
• List Methods and Useful Built-in Functions
• Copying Lists
• Two-Dimensional Lists
• Tuples

2

Sequences

• Sequence: an object that contains multiple items of
data
• The items are stored in sequence one after another

• Python provides different types of sequences, including
lists and tuples
• The difference between these is that a list is mutable and a

tuple is immutable

3

Introduction to Lists

• List: an object that contains multiple data items
• Element: An item in a list
• Format: list = [item1, item2, etc.]
• Can hold items of different types

•print function can be used to display an entire list

•list() function can convert certain types of objects
to lists

4

Introduction to Lists (cont’d.)
• Here is a statement that creates a list of integers:
even_numbers = [2, 4, 6, 8, 10]

• The following is another example:
names = ['Molly', 'Steven', 'Will', 'Alicia', 'Adriana']

• A list can hold items of different types, as shown in the following
example:

info = ['Alicia', 27, 1550.87]

5

The Repetition Operator and
Iterating over a List
• Repetition operator: makes multiple copies of a list and

joins them together
• The * symbol is a repetition operator when applied to a

sequence and an integer
• Sequence is left operand, number is right

• General format: list * n

• You can iterate over a list using a for loop
• Format: for x in list:

6

Indexing

• Index: a number specifying the position of an element
in a list
• Enables access to individual element in list
• Index of first element in the list is 0, second element is 1, and

n’th element is n-1
• Negative indexes identify positions relative to the end of the

list
• The index -1 identifies the last element, -2 identifies the next to last

element, etc.

7

The len function

• An IndexError exception is raised if an invalid index
is used

•len function: returns the length of a sequence such as
a list
• Example: size = len(my_list)
• Returns the number of elements in the list, so the index of

last element is len(list)-1
• Can be used to prevent an IndexError exception when

iterating over a list with a loop

8

Lists Are Mutable

• Mutable sequence: the items in the sequence can be
changed
• Lists are mutable, and so their elements can be changed

• An expression such as
• list[1] = new_value can be used to assign a

new value to a list element
• Must use a valid index to prevent raising of an IndexError

exception

9

10

Concatenating Lists

• Concatenate: join two things together
• The + operator can be used to concatenate two lists
– Cannot concatenate a list with another data type, such as a

number

• The += augmented assignment operator can also be
used to concatenate lists

11

List Slicing

• Slice: a span of items that are taken from a sequence
• List slicing format: list[start : end]
• Span is a list containing copies of elements from start up

to, but not including, end
• If start not specified, 0 is used for start index
• If end not specified, len(list) is used for end index

• Slicing expressions can include a step value and negative
indexes relative to end of list

12

Finding Items in Lists with the in
Operator
• You can use the in operator to determine whether an

item is contained in a list
• General format: item in list
• Returns True if the item is in the list, or False if it is not in

the list

• Similarly you can use the not in operator to
determine whether an item is not in a list

13

14

List Methods

•append(item): used to add items to a list – item is
appended to the end of the existing list

15

List Methods (cont’d.)

•index(item): used to determine where an item is
located in a list
• Returns the index of the first element in the list containing
item
• Raises ValueError exception if item not in the list

16

17

18

List Methods (cont’d.)

•insert(index, item): used to insert item at
position index in the list

•sort(): used to sort the elements of the list in
ascending order

19

20

List Methods (cont’d.)

•remove(item): removes the first occurrence of
item in the list

• Raises ValueError exception if item not in the list

•reverse(): reverses the order of the elements in the
list

21

Useful Built-in Functions

•del statement: removes an element from a specific
index in a list
• General format: del list[i]

22

Useful Built-in Functions (cont’d.)

•min and max functions: built-in functions that
returns the item that has the lowest or highest value in
a sequence
• The sequence is passed as an argument

•Sum functions: built-in functions that returns the sum
of all values in a sequence

23

List Referencing

• After this code executes, both
variables list1 and list2 will
reference the same list in
memory.

24

Copying Lists

• To make a copy of a list you must copy each element of
the list
• Two methods to do this:

• Creating a new empty list and using a for loop to add a copy of each
element from the original list to the new list

• Creating a new empty list and concatenating the old list to the new
empty list

As a result, list1 and list2 will
reference two separate but identical lists.

25

26

Two-Dimensional Lists

• Two-dimensional list: a list that contains other lists as its
elements
• Also known as nested list
• Common to think of two-dimensional lists as having rows and

columns
• Useful for working with multiple sets of data

• To process data in a two-dimensional list need to use
two indexes

• Typically use nested loops to process

27

Two-Dimensional Lists (cont’d.)
28

29

Tuples

• Tuple: an immutable sequence
• Very similar to a list
• Once it is created it cannot be changed
• Format: tuple_name = (item1, item2)
• Tuples support operations as lists

• Subscript indexing for retrieving elements
• Methods such as index
• Built in functions such as len, min, max, sum
• Slicing expressions
• The in, +, and * operators

30

Tuples (cont’d.)

• Tuples do not support the methods:
• append
• remove
• insert
• reverse
• sort

• Tuples do not support del statement

31

32

Tuples (cont’d.)

• Advantages for using tuples over lists:
• Processing tuples is faster than processing lists
• Tuples are safe
• Some operations in Python require use of tuples

•list() function: converts tuple to list
•tuple() function: converts list to tuple

33

34

Summary
• This chapter covered:
• Lists, including:

• Repetition and concatenation operators
• Indexing
• Techniques for processing lists
• Slicing and copying lists
• List methods and built-in functions for lists
• Two-dimensional lists

• Tuples, including:
• Immutability
• Difference from and advantages over lists

35

