
1

NumPy Module

The Basics
NumPy’s main object is the homogeneous multidimensional array. It is a table of elements

(usually numbers), all of the same type, indexed by a tuple of non-negative integers. In NumPy
dimensions are called axes.

For example, the coordinates of a point in 3D space [1, 2, 1] has one
axis. That axis has 3 elements in it, so we say it has a length of 3. In the
example pictured, the array has 2 axes. The first axis has a length of 2, the
second axis has a length of 3.

NumPy’s array class is called ndarray. It is also known by the alias array. The important
attributes of an ndarray object are:

• ndarray.ndim - the number of axes (dimensions) of the array.

• ndarray.shape - the dimensions of the array. This is a tuple of integers indicating the
size of the array in each dimension. For a matrix with n rows and m columns, shape will
be (n,m). The length of the shape tuple is therefore the number of axes, ndim.

• ndarray.size - the total number of elements of the array. This is equal to the product of
the elements of shape.

(more on next slide)

The Basics
• ndarray.dtype - an object describing the type of the elements in the array. One can create or

specify dtype’s using standard Python types. Additionally NumPy provides types of its own.
numpy.int32, numpy.int16, and numpy.float64 are some examples.

• ndarray.itemsize - the size in bytes of each element of the array. For example, an array of
elements of type float64 has itemsize 8 (=64/8), while one of type complex32 has itemsize 4
(=32/8). It is equivalent to ndarray.dtype.itemsize.

• ndarray.data - the buffer containing the actual elements of the array. Normally, we won’t
need to use this attribute because we will access the elements in an array using indexing
facilities.

The Basics Array Creation – array function

There are several ways to create arrays.

For example, you can create an array from a regular
Python list or tuple using the array function. The
type of the resulting array is deduced from the type
of the elements in the sequences.

The type of the array can also be explicitly specified at creation time:



2

The Basics Array Creation – zeros, ones, empty function
The function zeros creates an array full of zeros.

The function ones creates an array full of ones.

The function empty creates an array whose initial content is random and depends on the state of 
the memory. By default, the dtype of the created array is float64.

The Basics Array Creation – arange, linspace function

To create sequences of numbers, NumPy provides the arange function which is analogous to the
Python built-in range, but returns an array.

When arange is used with floating point arguments, it is generally not possible to predict the
number of elements obtained, due to the finite floating point precision.

For this reason, it is usually better to use the function linspace that receives as an argument the
number of elements that we want, instead of the step:

The Basics Printing Array
When you print an array, NumPy displays it in a similar way to nested lists, but with the following
layout:

One-dimensional arrays are then printed as rows, bidimensionals as matrices and tridimensionals as
lists of matrices.

• the last axis is printed from left to right,
• the second-to-last is printed from top to bottom,
• the rest are also printed from top to bottom, with each slice separated from the next by an

empty line.

The Basics Basic Operations – basic elementwise operators
Arithmetic operators on arrays apply elementwise. A new array is created and filled with the result.



3

The Basics Basic Operations – elementwise product
Unlike in many matrix languages, the product operator * operates elementwise in NumPy arrays.
The matrix product can be performed using the @ operator (in python >=3.5) or the dot function
or method:

The Basics Basic Operations – in-place operations
Some operations, such as += and *=, act in place to modify an existing array rather than create
a new one.

The Basics Basic Operations – upcasting
When operating with arrays of different types, the type of the resulting array corresponds to the
more general or precise one (a behavior known as upcasting).

The Basics Basic Operations – methods of ndarray class
Many unary operations, such as computing the sum of all the elements in the array, are
implemented as methods of the ndarray class.



4

The Basics Basic Operations – methods of ndarray class (cont.)
By default, these operations apply to the array as though it were a list of numbers, regardless of
its shape. However, by specifying the axis parameter you can apply an operation along the
specified axis of an array:

The Basics Universal Functions
NumPy provides familiar mathematical functions such as sin, cos, and exp. In NumPy, these are
called “universal functions”(ufunc). Within NumPy, these functions operate elementwise on an
array, producing an array as output.

The Basics Indexing, Slicing and Iterating
One-dimensional arrays 

can be indexed, sliced 
and iterated over, much 

like list and other 
Python sequences.

The Basics Indexing, Slicing and Iterating
Multidimensional arrays can have one index per axis. These indices are given in a tuple separated
by commas:



5

The Basics Indexing, Slicing and Iterating

When fewer indices are provided than the number of axes, the missing indices are considered
complete slices:

The Basics Indexing, Slicing and Iterating
The expression within brackets in b[i] is treated as an i followed by as many instances of : as
needed to represent the remaining axes. NumPy also allows you to write this using dots as b[i, ...].

The dots (...) represent as many colons as needed to produce a complete indexing tuple. For
example, if x is an array with 5 axes, then

• x[1, 2, ...] is equivalent to x[1, 2, :, :, :],
• x[..., 3] to x[:, :, :, :, 3] and
• x[4, ..., 5, :] to x[4, :, :, 5, :].

The Basics Indexing, Slicing and Iterating
Iterating over multidimensional arrays
is done with respect to the first axis:

However, if one wants to perform an
operation on each element in the
array, one can use the flat attribute
which is an iterator over all the
elements of the array:

Shape Manipulation Changing the shape of an array
An array has a shape given by the number of elements along each axis:



6

Shape Manipulation Changing the shape of an array
The shape of an array can be changed with various commands. Note that the following three
commands all return a modified array, but do not change the original array:

Shape Manipulation Changing the shape of an array
The reshape function returns its argument with a modified shape, whereas the ndarray.resize
method modifies the array itself:

If a dimension is given as -1 in a reshaping operation, the other dimensions are automatically
calculated:

Shape Manipulation Stacking together different arrays
Several arrays can be stacked together along different axes:

Shape Manipulation Stacking together different arrays
The function column_stack stacks 1D arrays as columns into a 2D array. It is equivalent to hstack
only for 2D arrays:



7

Shape Manipulation Stacking together different arrays
On the other hand, the function row_stack is equivalent to vstack for any input arrays.
In fact, row_stack is an alias for vstack:

In general, for arrays with more than two dimensions, hstack stacks along their second axes, vstack
stacks along their first axes, and concatenate allows for an optional arguments giving the number of
the axis along which the concatenation should happen.

Shape Manipulation Stacking together different arrays
In complex cases, r_ and c_ are useful for creating arrays by stacking numbers along one axis.
They allow the use of range literals (“:”)

When used with arrays as arguments, r_ and c_ are similar to vstack and hstack in their default
behavior, but allow for an optional argument giving the number of the axis along which to
concatenate.

Shape Manipulation Splitting one array into several smaller ones
Using hsplit, you can split an array along its horizontal axis, either by specifying the number of
equally shaped arrays to return, or by specifying the columns after which the division should
occur:

vsplit splits along the vertical axis, and array_split allows one to specify along which
axis to split.

Copies and Views No Copy at All
When operating and manipulating arrays, their data is sometimes copied into a new array and
sometimes not. This is often a source of confusion for beginners. There are three cases, so let’s
look at No Copy at All case first.

Simple assignments make no copy of objects or their data.

Python passes mutable objects as references, so function calls make no copy.



8

Copies and Views View or Shallow Copy
Different array objects can share the same data. The view method creates a new array object
that looks at the same data.

Copies and Views View or Shallow Copy (cont.)
Slicing an array returns a view of it:

Copies and Views Deep Copy

The copy method makes a complete copy of the array and its data.

Sometimes copy should be called after slicing if the original array is not required anymore. For
example, suppose a is a huge intermediate result and the final result b only contains a small fraction
of a, a deep copy should be made when constructing b with slicing:

If b = a[:100] is used instead, a is referenced by b and will persist in memory even if del a is
executed.

Functions and Methods Overview
Here is a list of some useful NumPy functions and methods names ordered in categories.

Array Creation
arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace,
mgrid, ogrid, ones, ones_like, r_, zeros, zeros_like

Conversions
ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat

Manipulations

array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item,
newaxis, ravel, repeat, reshape, resize, squeeze, swapaxes, take, transpose, vsplit, vstack

Questions
all, any, nonzero, where

(more on next slide)



9

Functions and Methods Overview
Ordering

argmax, argmin, argsort, max, min, ptp, searchsorted, sort

Operations
choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum

Basic Statistics

cov, mean, std, var

Basic Linear Algebra
cross, dot, outer, linalg.svd, vdot


