
1

CN101
Lecture 2-3

Input, Processing, and Output

Topics

• Designing a Program
• Input, Processing, and Output

• Displaying Output with print Function
• Comments

• Variables
• Reading Input from the Keyboard

• Performing Calculations
• More About Data Output

• Named Constants

2

Designing a Program

• Programs must be designed before they are written
• Program development cycle:

• Design the program
• Write the code
• Correct syntax errors
• Test the program
• Correct logic errors

3

Designing a Program (cont’d.)

• Design is the most important part of the program
development cycle

• Understand the task that the program is to perform
• Work with customer to get a sense what the program is

supposed to do
• Ask questions about program details
• Create one or more software requirements

4

Designing a Program (cont’d.)

• Determine the steps that must be taken to perform the
task
• Break down required task into a series of steps
• Create an algorithm, listing logical steps that must be taken

• Algorithm: set of well-defined logical steps that must be
taken to perform a task

5

Pseudocode

• Pseudocode: fake code
• Informal language that has no syntax rule
• Not meant to be compiled or executed
• Used to create model program

• No need to worry about syntax errors, can focus on program’s design
• Can be translated directly into actual code in any programming

language

6



2

Pseudocode (cont’d.)

• For example, suppose you have been asked to write a
program to calculate and display the gross pay for an
hourly paid employee.

• Here are the steps that you would take:
1. Input the hours worked
2. Input the hourly pay rate
3. Calculate gross pay as hours worked multiplied by pay rate
4. Display the gross pay

7

Flowcharts

• Flowchart: diagram that graphically depicts the steps in
a program
• Ovals are terminal symbols
• Parallelograms are input and output symbols
• Rectangles are processing symbols
• Symbols are connected by arrows that represent the flow of

the program

8

9

Input, Processing, and Output

• Typically, computer performs three-step process
• Receive input

• Input: any data that the program receives while it is running
• Perform some process on the input

• Example: mathematical calculation
• Produce output

10

Codes and Characters

• Each character is coded as a byte
• Most common coding system is ASCII (Pronounced

as-key)
• ASCII = American National Standard Code for

Information Interchange

11

ASCII Features

• 7-bit code
• 8th bit is unused (or used for a parity bit)

• 27 = 128 codes
• Two general types of codes:

• 95 are “Graphic” codes (displayable on a console)
• 33 are “Control” codes (control features of the console or

communications channel)

12



3

13Standard ASCII code (in decimal) Standard ASCII code (in decimal) 14

95 Graphic codes

Standard ASCII code (in decimal) 15

33 Control codes Displaying Output with the print
Function
• Function: piece of prewritten code that performs an

operation
• print function: displays output on the screen

• Argument: data given to a function
• Example: data that is printed to screen

• Statements in a program execute in the order that they
appear
• From top to bottom

16

Displaying Output with the print
Function (cont’d)
• In interactive mode

• Script mode

17

chr(n) and  ord(str) functions

• Functions  chr(n) and  ord(str) access ASCII
values
• print(chr(65)) displays the letter A
• print(ord(' A' )) displays the number 65

18

>>> print(chr(65))
A
>>> print(ord('A'))
65
>>>

Enter

Enter



4

Strings and String Literals

• String: sequence of characters that is used as data
• String literal: string that appears in actual code of a

program
• Must be enclosed in single (') or double (") quote marks

19

Strings and String Literals (cont’d)

• If you want a string literal to contain either a single-quote or 
an apostrophe as part of the string, you can enclose the string
literal in double-quote marks

20

Strings and String Literals (cont’d)

• Similarly if you want a string literal to contain a double-quote,
you can enclose the string literal in single-quote marks

21

Strings and String Literals (cont’d)

• String literal can be enclosed in triple quotes (''' or """)
• Enclosed string can contain both single and double quotes and can

have multiple lines
• Here is an example:

22

Comments

• Comments: notes of explanation within a program
• Ignored by Python interpreter

• Intended for a person reading the program’s code
• Begin with a # character

• End-line comment: appears at the end of a line of code
• Typically explains the purpose of that line

23

Comments (cont’d)
24



5

Comments (cont’d)
25

Variables

• Variable: name that represents a value stored in the
computer memory
• Used to access and manipulate data stored in memory
• A variable references the value it represents

• Assignment statement: used to create a variable and
make it reference data
• General format is variable = expression

• Example: age = 25
• Assignment operator: the equal sign (=)

26

Variables (cont’d.)

• In assignment statement, variable receiving value must
be on left side

• A variable can be passed as an argument to a function
• Variable name should not be enclosed in quote marks

• You can only use a variable if a value is assigned to it

27

Example
28

Example
29

Variable Naming Rules

• Rules for naming variables in Python:
• Variable name cannot be a Python key word
• Variable name cannot contain spaces
• First character must be a letter or an underscore
• After first character may use letters, digits, or underscores
• Variable names are case sensitive

• Variable name should reflect its use

30



6

Displaying Multiple Items with the 
print Function
• Python allows one to display multiple items with a

single call to print
• Items are separated by commas when passed as arguments
• Arguments displayed in the order they are passed to the 

function
• Items are automatically separated by a space when displayed

on screen

31

Variable Reassignment

• Variables can reference different values while program
is running

• Garbage collection: removal of values that are no longer
referenced by variables
• Carried out by Python interpreter

• A variable can refer to item of any type
• Variable that has been assigned to one type can be reassigned

to another type

32

Example
33

Numeric Data Types, Literals, and the 
str Data Type
• Data types: categorize value in memory

• e.g., int for integer, float for real number, str used for
storing strings in memory

• Numeric literal: number written in a program
• No decimal point considered int, otherwise, considered float

• Some operations behave differently depending on data
type

34

Storing Strings with the str Data Type
35

Reassigning a Variable to a Different 
Type
• A variable in Python can refer to items of any type

36



7

Reading Input from the Keyboard

• Most programs need to read input from the user
• Built-in input function reads input from keyboard

• Returns the data as a string
• Format: variable = input(prompt)

• prompt is typically a string instructing user to enter a value

• Does not automatically display a space after the prompt

37

Example
38

Reading Numbers with the input
Function
• input function always returns a string
• Built-in functions convert between data types

• int(item) converts item to an int
• float(item) converts item to a float
• Nested function call: general format: 
function1(function2(argument))
• value returned by function2 is passed to function1

• Type conversion only works if item is valid numeric value,
otherwise, throws exception

39 40

Enter

41

eval()function
• The eval() function evaluates the specified expression,

if the expression is a legal Python statement, it will be
executed.

>>> eval('1 + 2')
3
>>> eval(1 + 2)
Traceback (most recent call last):

File "<stdin>", line 1, in 
<module>
TypeError: eval() arg 1 must be a 
string, bytes or code object
>>>

42

1 # Get the user's name, age, and income.

2 name = input('What is your name? ‘)
3 age = eval(input('What is your age? ‘))

4 income = eval(input('What is your income? ‘))
5
6 # Display the data.
7 print('Here is the data you entered:’)
8 print('Name:', name)

9 print('Age:', age)
10 print('Income:', income)

input2.py

What is your name? Peter
What is your age? 35
What is your income? 10000.50
Here is the data you entered:
Name: Peter
Age: 35
Income: 10000.5

Enter

Enter

Enter



8

Performing Calculations
• Math expression: performs calculation and gives a

value
• Math operator: tool for performing calculation
• Operands: values surrounding operator

• Variables can be used as operands
• Resulting value typically assigned to variable

43

Performing Calculations (cont’d)
44

Performing Calculations (cont’d)
• Two types of division:

• / operator performs floating point division
• // operator performs integer division

• Positive results truncated, negative rounded away from zero

45 46

Operator  Precedence and Grouping 
with Parentheses
• Python operator precedence:

1. Operations enclosed in parentheses
• Forces operations to be performed before others

2. Exponentiation (**)
3. Multiplication (*), division (/ and //), and remainder (%)
4. Addition (+) and subtraction (-)

• Higher precedence performed first
• Same precedence operators execute from left to right

47

Example
48



9

The Exponent Operator and the 
Remainder Operator
• Exponent operator (**): Raises a number to a power

• x ** y = xy

• Remainder operator (%): Performs division and returns
the remainder
• a.k.a. modulus operator
• e.g., 4%2=0, 5%2=1
• Typically used to convert times and distances, and to detect

odd or even numbers

49 50

Converting Math Formulas to 
Programming Statements
• Operator required for any mathematical operation
• When converting mathematical expression to

programming statement:
• May need to add multiplication operators
• May need to insert parentheses

51

Mixed-Type Expressions and Data 
Type Conversion
• Data type resulting from math operation depends on

data types of operands
• Two int values: result is an int
• Two float values: result is a float
• int and float: int temporarily converted to float, 

result of the operation is a float
• Mixed-type expression

• Type conversion of float to int causes truncation of
fractional part

52

Breaking Long Statements into 
Multiple Lines
• Long statements cannot be viewed on screen without

scrolling and cannot be printed without cutting off
• Multiline continuation character (\): Allows to break a

statement into multiple lines

result = var1 * 2 + var2 * 3 + \
var3 * 4 + var4 * 5

53

Breaking Long Statements into 
Multiple Lines
• Any part of a statement that is enclosed in parentheses

can be broken without the line continuation character.

print("Monday's sales are", monday,
"and Tuesday's sales are", tuesday,
"and Wednesday's sales are", Wednesday)

total = (value1 + value2 +
value3 + value4 +
value5 + value6)

54



10

More About Data Output

• print function displays line of output
• Newline character at end of printed data
• Special argument end='delimiter' causes print to

place delimiter at end of data instead of newline 
character

• print function uses space as item separator
• Special argument sep='delimiter' causes print to use
delimiter as item separator

55

More About Data Output (cont’d.)

• Special characters appearing in string literal
• Preceded by backslash (\)

• Examples: newline (\n), horizontal tab (\t)
• Treated as commands embedded in string

56

More About Data Output (cont’d.)

• When + operator used on two strings in performs string
concatenation
• Useful for breaking up a long string literal

57

Formatting Numbers

• Can format display of numbers on screen using built-in
format function
• Two arguments:

• Numeric value to be formatted
• Format specifier

• Returns string containing formatted number
• Format specifier typically includes precision and data type

• Can be used to indicate comma separators and the minimum field
width used to display the value

58

Example
59

Example
60



11

Inserting Comma Separators

• If you want the number to be formatted with comma
separators, you can insert a comma into the format
specifier, as shown here:

61 62

Specifying a Minimum Field Width

• The format specifier can also include a minimum field
width, which is the minimum number of spaces that
should be used to display the value. The following
example prints a number in a field that is 12 spaces
wide:

63 64

Formatting a Floating-Point Number 
as a Percentage
• The % symbol can be used in the format string of
format function to format number as percentage

65

Formatting Integers

• To format an integer using format function:
• Use d as the type designator
• Do not specify precision
• Can still use format function to set field width or comma

separator

66



12

Magic Numbers

• A magic number is an unexplained numeric value that
appears in a program’s code. Example:

amount = balance * 0.069

• What is the value 0.069? An interest rate? A fee
percentage? Only the person who wrote the code
knows for sure.

67

The Problem with Magic Numbers

• It can be difficult to determine the purpose of the
number.

• If the magic number is used in multiple places in the
program, it can take a lot of effort to change the
number in each location, should the need arise.

• You take the risk of making a mistake each time you
type the magic number in the program’s code.
• For example, suppose you intend to type 0.069, but you 

accidentally type .0069. This mistake will cause mathematical
errors that can be difficult to find.

68

Named Constants

• You should use named constants instead of magic numbers.
• A named constant is a name that represents a value that does not

change during the program's execution.
• Example:

INTEREST_RATE = 0.069

• This creates a named constant named INTEREST_RATE, 
assigned the value 0.069. It can be used instead of the magic
number:

amount = balance * INTEREST_RATE

69

Advantages of Using Named 
Constants
• Named constants make code self-explanatory (self-documenting)

• Named constants make code easier to maintain (change the value
assigned to the constant, and the new value takes effect 
everywhere the constant is used)

• Named constants help prevent typographical errors that are
common when using magic numbers

70

Python String Formatting

• Python supports multiple ways to format text strings.
For example, %-formatting, str.format(), and f-Strings.

71

%-formatting

• Strings in Python have a unique built-in operation that
can be accessed with the % operator.

72

name = "Eric"
print("Hello, %s." % name)

Hello, Eric.

Program Output

Program s-1



13

%-formatting (cont’d)
73

name = "Eric"
age = 74
print("Hello, %s. You are %s." % (name, age))

Hello, Eric. You are 74.

Program Output

Program s-2

%-formatting (cont’d)
74

first_name = "Eric"
last_name = "Idle"
age = 74
profession = "comedian"
affiliation = "Monty Python"
print("Hello, %s %s. You are %s. You are a %s. 

You were a member of %s." % 
(first_name, last_name, age, profession, affiliation))

Hello, Eric Idle. You are 74. You are a comedian. You 
were a member of Monty Python.

Program Output

Program s-3

str.format()

• str.format() was introduced in Python 2.6. With
str.format(), the replacement fields are marked by curly
braces

75

name = "Eric"
age = 74
print("Hello, {}. You are {}.".format(name, age))

Hello, Eric. You are 74.

Program Output

Program s-4

str.format() (cont’d)

• You can reference variables in any order by referencing
their index.

76

name = "Eric"
age = 74
print("Hello, {1}. You are {0}.".format(age, name))

Hello, Eric. You are 74.

Program Output

Program s-5

str.format() (cont’d)
77

first_name = "Eric"
last_name = "Idle"
age = 74
profession = "comedian"
affiliation = "Monty Python"
print(("Hello, {first_name} {last_name}. You are {age}. " + 
"You are a {profession}. You were a member of {affiliation}.") \
.format(first_name=first_name, last_name=last_name, age=age, \
profession=profession, affiliation=affiliation))

Hello, Eric Idle. You are 74. You are a comedian. You were 
a member of Monty Python.

Program Output

Program s-6

Python 3's f-Strings

• Python 3.6 added a new string formatting approach
called formatted string literals or “f-strings”.

• Also called “formatted string literals,” f-strings are string
literals that have an f at the beginning and curly braces
containing expressions that will be replaced with their
values.

78



14

f-Strings
79

name = "Eric"
age = 74
print(f"Hello, {name}. You are {age}.")

Hello, Eric. You are 74.

Program Output

Program s-7

f-Strings (cont’d)
80

first_name = "Eric"
last_name = "Idle"
age = 74
profession = "comedian"
affiliation = "Monty Python"
print(f"Hello, {first_name} {last_name}. You are {age}. " + 

f"You are a {profession}. " + 
f"You were a member of {affiliation}.")

Hello, Eric Idle. You are 74. You are a comedian. You were 
a member of Monty Python.

Program Output

Program s-8

f-Strings (cont’d)
81

name = "eric"
sentence = f'{name.title()} is funny.'
print(sentence)

Eric is funny.

Program Output

Program s-9

f-Strings (cont’d)
82

x = 3.14159265
print(f'PI = {x:.2f}')

PI = 3.14

Program Output

Program s-10

f-Strings (cont’d)
83

x = 12345.6789
print(f'x = {x:,.2f}')

x = 12,345.68

Program Output

Program s-11

f-Strings (cont’d)
84

s1 = 'ab'
s2 = 'abc'
s3 = 'abcd'
s4 = 'abcde'
print(f'{s1:10}')
print(f'{s2:<10}')
print(f'{s3:^10}')
print(f'{s4:>10}')

ab 
abc

abcd
abcde

Program Output

Program s-12



15

f-Strings (cont’d)
85

a = 5
b = 10
print(f'Five plus ten is {a + b} and not {2 * (a + b)}.')

Five plus ten is 15 and not 30.

Program Output

Program s-13

Summary

• This chapter covered:
• The program development cycle, tools for program design,

and the design process
• Ways in which programs can receive input, particularly from

the keyboard 
• Ways in which programs can present and format output
• Use of comments in programs
• Uses of variables and named constants
• Tools for performing calculations in programs

86


